Primes at a glance
Authors:
R. K. Guy, C. B. Lacampagne and J. L. Selfridge
Journal:
Math. Comp. 48 (1987), 183-202
MSC:
Primary 11A41
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866108-3
MathSciNet review:
866108
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let ,
,
,
for all primes
. Then N is 0, 1 or a prime. Writing N in this form suggests a primality and a squarefreeness test. If we also require that when the prime
and
then
, we say that
is a presentation of N. We list all presentations found for any N. We believe our list is complete.
- [1] D. H. Lehmer, On a problem of Störmer, Illinois J. Math. 8 (1964), 57–79. MR 0158849
- [2] D. H. Lehmer, On the Converse of Fermat’s Theorem, Amer. Math. Monthly 43 (1936), no. 6, 347–354. MR 1523680, https://doi.org/10.2307/2301798
- [3] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of 𝑏ⁿ±1, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR 715603
Retrieve articles in Mathematics of Computation with MSC: 11A41
Retrieve articles in all journals with MSC: 11A41
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866108-3
Article copyright:
© Copyright 1987
American Mathematical Society