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Cyclotomic Resultants

By D. H. Lehmer and Emma Lehmer

Dedicated to Daniel Shanks on his 10 th birthday

Abstract. This paper examines the eth power character of the divisors of two cyclotomic

period polynomials of degree ex and e2. The special cases ex - 2 and e2 = 3, 4, are

considered in detail. As corollaries one finds new conditions for cubic and quartic residuacity.

The computational method consists in representing cyclotomic numbers in the form

ciS + cií2 + • • ' +cp^iípl- where J = e2,"/p. Multiplication is reduced to addition and

subtraction, which are carried out in a multi-precision system.

The Gaussian /-nomial periods rj, for a prime p = ef + 1 can be written

(1) 1,= E?r'       (/ = 0,l,...,e-l),
x = 0

where f = e2,"/p and g is a primitive root of p. The periods are roots of a monic

polynomial of degree e with integer coefficients,

e-l

(2) *,(*) = FI (* - 1/) = xe + Xe'1 + c2xe~2 + ■■■ +ce.
; = o

It is well known that the discriminant De of \¡/e splits into e-l factors, where

(3) oe= n u-^)2=nn
i<j=0 k=\

and

<?-l

pk= n (i, - t»,+j.

Kummer [3] showed that all the prime factors of the numbers represented by

4>e(x) are eth power residues of p, except those that divide Pk for (k, e) > 1. The

primes that divide De and are not e th power residues of p are called exceptional if

they divide 4*e(x) for some integer x.

This also holds for a generalized cyclotomy in which 17, is replaced by

(4) Bj = E e,,,,
1=0

where e, = 0, 1 or -1.
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212 D. H. LEHMER AND EMMA LEHMER

Another cyclotomic invariant which does not appear to have been studied before

is the resultant R(ex, e2) of two period polynomials t/> and ip for the same prime

p = ef + 1, where e is the least common multiple of ex and e2. By definition,

i-i

(5) R(ex,e2)= n*ei(li)
i-O

or, what is the same thing,

«i-i «2-1

(6) *(*i,e2)= FI   IKli-^).
i=0 ,/ = o

where tj, and iff are the roots of 4>e(x) and t//e (x). The following theorem is an

analogue of (3).

Theorem 1. Let ex and e2 be two distinct divisors of p — 1. Let e be the least

common multiple and o be the greatest common divisor of ex and e2. Let R(ex,e2) be

the resultant of \pe (x) and \¡/e (x) as defined in (5). Then

s-i

(7) *(ei,«2)=n*x(ei.e2).
x=o

where

«i-i «2/8

(s) *x(«i.*2)- n n^(«-.»)
/ = 0   « = 1

and where

e2/S e,/i

(9) F\(',n) = E 1/+*ei -   E íí,+x+B8+«C2
¿ = 1 m=l

a«i/ where tj„ are í«e rooís of ipe(x). The factors R\(ex, e2) are rational integers.

Proof. We arrange the factors of (6) so that R is the product of those subsets of

r\i — t,  for which

/ = / + X(modi)       (/ = 0,1.fi - 1).

Then we use the identities

«i/S e2/S

1» —    í—¡  Vn + ke1,> Vp   ~~    2-1   rlv + me2'
fc-1 m = l

This proves (8). To prove that R(ex, e2) is a rational integer, we rearrange the

factors £(/', «) in (8) into a linear array as follows. Let

C = £A(o,o)= Zvkei- Ew,
A: =0 m = 0

Then we define 0„<X) by

"v       =    2-1 Vi> + ket  ~    2—i   li + Uat,'
k = 0 »1 = 0

We see that

eP-Z'jVj       («," 0,1,-1),

so that all the 0JX) satisfy the generalized cyclotomic polynomial 4>leX)(x). Then

l*x(«l,«2)|-+SX)(0)

is a rational integer.   D
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Corollary. Let e be the least common multiple of ex and e2. Then the prime

factors of Rx(ex, e2) that do not divide pe are eth power residues of p, except possibly

those which divide

(10) Pp-TÍ{»lk)-9¡&)
/-o

for some k not prime to e.

We next consider two extreme cases in which 8 = 1 and 8 = e/2.

Case I. Let ex and e2 be coprime. Then 8 = 1, e = ex ■ e2 and hence

«i-i

R(ex,e2) = R0(ex,e2)=  Fililí)
i=0

by (5).

For example, let ex = 2 and e2 = 3 and

4p = L2 + 21M2,      L si (mod 3).

If we substitute

i_[{-l±{p)/2      if/7 = 12« + l,

'' " \ (_l ± f^)/2    if/7 = 12« + 7

into the cyclotomic cubic [1],

M*) = x3 + x2- ^r±x - p{L + 2)-1 = Yl(x- tf),
J *•' i=0

we obtain, with c= -[/?(L + 3) - l]/27,

2c + E^-)2 -pl?-^-)2       if/7 = 12« + l,

7        A» ,7 ^
(2C + VMV)      «/-12- + 7.

Ä(2,3) is then the constant term of a sextic >p*(x) whose roots are

0, = 7?/+2 - Vi + 3 + Vi + 4-

All the divisors of R(2,3) are sextic residues of p unless they divide P2* or P3* for

Mix). But

^2* = Yl(e, - el+2) = n(nî'+2 - v',')2 = D3=p»
f=0 /-O

and

^ = n(^-ö,+3) = (^)6=/73.
( = 0

Therefore, if a prime q divides R(2,3), q is a sextic residue of /7 unless a divides

M. But it is well known that all the prime factors of M are cubic residues of p. The

form (11) for R(2,3) tells us that every divisor of R is a quadratic residue of p.

Hence R(2,3) has no exceptional divisors.

We note that R(2,3) increases very rapidly with p. Thus for p = 307

Ä(2,3) = 2475149 = 17 • 19 • 79 • 97,

and all the prime factors of R(2,3) are sextic residues of 307.
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Case II. If ex = 2e2 = e, then 8 = e/2 and (8) becomes

<?-i

(12) RAj,e)=   fi (V,< + Vi + e/2 - TJ, + e/2+x)>
v *•      '       1=0

so that if X = 0 then 0/O) = îj, and
e-l

*o(í.*) = ru = <Mo).
V Z       ' / = 0

This generates an interesting family of e/2 generalized period polynomials which

includes ^e(x).

If e is a prime, then only PjX) and Pj/j have to be examined for possible divisors

which are not eth power residues of p.

In the simplest case of e = 4, p = a2 + b2, a = 1 (mod4), there are two cases:

p = 8« + 1 and p = 8« + 5.

It is well known that [1]

•>«» rt^     /[(/>-D2-4/>(a-l)2]      if*-1 (mod8),
256Ä0(2,4) = { . .

\ [(3/7 + l)2 - 4p(a - l)2\     if/7 = 5(mod8)

and that P2m = pb2. We find similarly that

[(lp + I)2 - 4p(a + 3)2}       if/7 = l(mod8),

[(11/7 + l)2-4p(a + 3)2]     if p = 5 (mod8),
256/?1(2,4) =

and since by (12)

we have

0,(1)=T], + T), + 2-T), + 3,

p?>=n (e/1' - cu = n u -1,+2) = ̂ 2=^2.
i=0 i-O

Therefore, by the corollary to Theorem 1, any exceptional divisors of R0 or Rx

must divide d. But for p = 8« + 1 all the divisors of b are quartic residues of p. For

/j = 8« + 5 the primes of the form 4m + 3 dividing b may be only quadratic

residues of p[2,4]. They must appear to at least the second power in Rx(2,4).

For example, for p = 1789, a = 5, b = 42, we find

R0(2,4) = 112113 = 32- 12457,

Äi(2,4) = 1511111 = I2- 30839.

Both 3 and 7 are quartic nonresidues of 1789. Hence they are exceptional primes.

In considering these resultants it is important to be able to compute numerical

examples with any given value of p, ex and e2. With today's narrow computing

machines and the very considerable size of the resultants, a nonconventional method

of computing is called for.

The key to the problem is the cylotomic field Q(Ç).

We recall that _ j

f = exp(277/'//7)    and     £ T = 0.
l = 0

The general element of the field is of the form

a = c0 + c¿+ •■• +cp_xl'-\
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where the c's are rational integers. The unique reduced representative of a is

a = k¿ + k¿2 + • • • +kp_^-\

where k¡ = c, - c0. If

(i3) ß-jiS+jj2+---+j,-i!;'-1,

then a = ß if and only if k¡ =j¡ because of the irreducibility of 1 + x + x2

+ ■■■ +xp-\

We can easily recognize when a is a rational integer «. Indeed, in the representa-

tion (13), a = n if and only if kx = k2 =  • • •  = k    x = -«.

Similarly, we can recognize numbers of the form

a = A + B^(^l)(p-l)/2p,

where A and B are rational integers. The components k¡ have just two values. Those

with subscripts that are quadratic residues of p are equal to B - A, and those with

nonresidue subscripts are equal to -(A + B). By recognizing this phenomenon we

cut the running time in two.

In practice we use the redundant vector

(c0,cx,...,cp_x)

of dimension p to represent elements of the field. We perform vector operations on

such vectors, including reduction.

Let

a = (a0,ax,...,ap_x)    and    r = (b0, bx,..., bp_x)

be two arbitrary elements. Then

o + t = (a0 + b0,ax + bx,...,ap_x + bp_x),

o-t = (c0,cx,...,cp_x),

where

(14) c,=        E        ajbk.
j + k• = /' (mod p)

We see from (1) that

p-i
1, =  E djV,

.7 = 0

where Jy = 0 or 1. In fact, rj, is represented by the reduced vector

rii=(0,dx,...,dp_x).

This is a sparse vector since only 1 in e of its components differs from 0.

In calculating R\(ex, e2) in Theorem 1 we have to consider the product of factors

Fx(i, n) defined by (9). If we write

FÁi,n)=  eV,
A = l

then bk = 0,1 or -1. This means that in all the multiplications by Fx(i,n) in

arriving at Rx(ex,e2) in (8), terms of the summation (14) can be replaced by

additions or subtractions.

Since the resultants can be large, it becomes necessary to employ some sort of

multi-precision system to perform addition and subtraction. The simplest scheme is
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to write the components of the vectors to base 215 (for a machine with 15-bit words)

and use subroutines to add and subtract. This assures the calculation does not

overflow and it maintains the exactness of the result, despite the narrowness in the

arithmetic unit.

We give below a table showing all the resultants for p = 31. The factors of the

various R 's are given in parentheses.

e    ex    e2 R(ex,e2)ioxp = 3l.

6  2  3 (24 • 157)
6  2  6 (22 ■ 41)(2n)

6  3  6 (25)(210)(2 • 1163)

10  2  5 (5 ■ 41603)

10  2 10 (52)(5 • 7193)

10  5 10 (52)(5 • 1307)(55)(53 • 149)(5 • 2113)

15  3  5 (-33851)

15  3 15 (11719)(-2417)(1352777)

15  5 15 (1)(10169)(612)(-1301)(612)

30  2 15 (311 • 2031970151441)

30  2 30 (373 • 12535147973)(683 • 310120586219)

30  3 10 (1613 • 581458693)

30  3 30 (311 ■ 3091817X37201 • 428297)(1303 • 1427 • 36767)

30  5  6 (27529 • 12724447)

30  5 30 (1946801)(418700509)(4985483)(311 • 406907)(1303 • 19531)

30  6 10 (2737397093)(1448203937)

30  6 15 (11719 • 41479X373 ■ 22674083)(100926391799)

30  6 30 (1155247)(89653)(5688390013)(471614347)

(110043677)(311 • 374047)
30 10 15 (5953)(25 • 571331)(25 • 373.71549)(8091683)(1427 • 1861)

30 10 30 (1)(464939)(25 • 22259)(25 • 3112)(38069)(1907617)

(5537593)(46439)(62497)(20781781)
30 15 30 (1)(38069)(25 • 1489)(27901)(5953)(34721)

(5953)(20089)(53 • 1117)(25 • 311)(46439)

(25 • 683)(16741)(6263).

All the primes in this table are eth power residues of 31, except 2 and 5 which

divide e. Hence R(ex, e2) has no exceptional divisors for p = 31.
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