Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 48 (1987), 437-446
DOI:
https://doi.org/10.1090/S0025-5718-87-99761-4
Full-text PDF Free Access
References | Additional Information
- [1] Review 73, Math. Comp., v. 17, 1963, p. 464.
- [2] Review 1, Math. Comp., v. 38, 1982, pp. 331-332.
- [1] Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206. MR 683806, https://doi.org/10.2307/2006975
- [2] N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72. MR 45159, https://doi.org/10.2307/1969420
- [3] H. Cohen and H. W. Lenstra Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), no. 165, 297–330. MR 726006, https://doi.org/10.1090/S0025-5718-1984-0726006-X
- [4] Paul Erdős and Carl Pomerance, On the number of false witnesses for a composite number, Math. Comp. 46 (1986), no. 173, 259–279. MR 815848, https://doi.org/10.1090/S0025-5718-1986-0815848-X
- [5] S. Goldwasser & J. Kilian, Almost All Primes Can be Quickly Certified, Proc. 18th Annual ACM Sympos. on Theory of Computing (STOC), Berkeley, May 28-30, 1986, pp. 316-329.
- [6] Gary L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976), no. 3, 300–317. MR 480295, https://doi.org/10.1016/S0022-0000(76)80043-8
- [7] Louis Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), no. 1, 97–108. MR 582244, https://doi.org/10.1016/0304-3975(80)90007-9
- [8] Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- [9] J. Oesterlé, "Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisée," Astérisque, v. 61, 1979, pp. 165-167.
- [10] Carl Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), no. 156, 587–593. MR 628717, https://doi.org/10.1090/S0025-5718-1981-0628717-0
- [11] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to 25⋅10⁹, Math. Comp. 35 (1980), no. 151, 1003–1026. MR 572872, https://doi.org/10.1090/S0025-5718-1980-0572872-7
- [12] Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), no. 1, 128–138. MR 566880, https://doi.org/10.1016/0022-314X(80)90084-0
- [13] René Schoof, Elliptic curves over finite fields and the computation of square roots mod 𝑝, Math. Comp. 44 (1985), no. 170, 483–494. MR 777280, https://doi.org/10.1090/S0025-5718-1985-0777280-6
- [14] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), no. 1, 84–85. MR 429721, https://doi.org/10.1137/0206006
- [1] L. D. Baumert, W. H. Mills, and Robert L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), no. 1, 67–82. MR 644901, https://doi.org/10.1016/0022-314X(82)90058-0
- [2] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), no. 3, 374–437. MR 537798
- [3] Christian Friesen, Joseph B. Muskat, Blair K. Spearman, and Kenneth S. Williams, Cyclotomy of order 15 over 𝐺𝐹(𝑝²),𝑝=4,11(𝑚𝑜𝑑15), Internat. J. Math. Math. Sci. 9 (1986), no. 4, 665–704. MR 870524, https://doi.org/10.1155/S0161171286000832
- [4]
J. B. Muskat & K. S. Williams, Cyclotomy of Order Twelve Over
,
, Carleton Mathematical Series No. 217, January 1986, 73 pp.
- [5] A. L. Whiteman, The cyclotomic numbers of order twelve, Acta Arith. 6 (1960), 53–76. MR 118709, https://doi.org/10.4064/aa-6-1-53-76
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-87-99761-4
Article copyright:
© Copyright 1987
American Mathematical Society