Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **48** (1987), 437-446

DOI:
https://doi.org/10.1090/S0025-5718-87-99761-4

Full-text PDF Free Access

References | Additional Information

**[1]**Review**73**,*Math. Comp.*, v. 17, 1963, p. 464.**[2]**Review**1**,*Math. Comp.*, v. 38, 1982, pp. 331-332.**[1]**Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely,*On distinguishing prime numbers from composite numbers*, Ann. of Math. (2)**117**(1983), no. 1, 173–206. MR**683806**, https://doi.org/10.2307/2006975**[2]**N. C. Ankeny,*The least quadratic non residue*, Ann. of Math. (2)**55**(1952), 65–72. MR**45159**, https://doi.org/10.2307/1969420**[3]**H. Cohen and H. W. Lenstra Jr.,*Primality testing and Jacobi sums*, Math. Comp.**42**(1984), no. 165, 297–330. MR**726006**, https://doi.org/10.1090/S0025-5718-1984-0726006-X**[4]**Paul Erdős and Carl Pomerance,*On the number of false witnesses for a composite number*, Math. Comp.**46**(1986), no. 173, 259–279. MR**815848**, https://doi.org/10.1090/S0025-5718-1986-0815848-X**[5]**S. Goldwasser & J. Kilian,*Almost All Primes Can be Quickly Certified*, Proc. 18th Annual ACM Sympos. on Theory of Computing (STOC), Berkeley, May 28-30, 1986, pp. 316-329.**[6]**Gary L. Miller,*Riemann’s hypothesis and tests for primality*, J. Comput. System Sci.**13**(1976), no. 3, 300–317. MR**480295**, https://doi.org/10.1016/S0022-0000(76)80043-8**[7]**Louis Monier,*Evaluation and comparison of two efficient probabilistic primality testing algorithms*, Theoret. Comput. Sci.**12**(1980), no. 1, 97–108. MR**582244**, https://doi.org/10.1016/0304-3975(80)90007-9**[8]**Hugh L. Montgomery,*Topics in multiplicative number theory*, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR**0337847****[9]**J. Oesterlé, "Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisée,"*Astérisque*, v. 61, 1979, pp. 165-167.**[10]**Carl Pomerance,*On the distribution of pseudoprimes*, Math. Comp.**37**(1981), no. 156, 587–593. MR**628717**, https://doi.org/10.1090/S0025-5718-1981-0628717-0**[11]**Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr.,*The pseudoprimes to 25⋅10⁹*, Math. Comp.**35**(1980), no. 151, 1003–1026. MR**572872**, https://doi.org/10.1090/S0025-5718-1980-0572872-7**[12]**Michael O. Rabin,*Probabilistic algorithm for testing primality*, J. Number Theory**12**(1980), no. 1, 128–138. MR**566880**, https://doi.org/10.1016/0022-314X(80)90084-0**[13]**René Schoof,*Elliptic curves over finite fields and the computation of square roots mod 𝑝*, Math. Comp.**44**(1985), no. 170, 483–494. MR**777280**, https://doi.org/10.1090/S0025-5718-1985-0777280-6**[14]**R. Solovay and V. Strassen,*A fast Monte-Carlo test for primality*, SIAM J. Comput.**6**(1977), no. 1, 84–85. MR**429721**, https://doi.org/10.1137/0206006**[1]**L. D. Baumert, W. H. Mills, and Robert L. Ward,*Uniform cyclotomy*, J. Number Theory**14**(1982), no. 1, 67–82. MR**644901**, https://doi.org/10.1016/0022-314X(82)90058-0**[2]**Bruce C. Berndt and Ronald J. Evans,*Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer*, Illinois J. Math.**23**(1979), no. 3, 374–437. MR**537798****[3]**Christian Friesen, Joseph B. Muskat, Blair K. Spearman, and Kenneth S. Williams,*Cyclotomy of order 15 over 𝐺𝐹(𝑝²),𝑝=4,11(𝑚𝑜𝑑15)*, Internat. J. Math. Math. Sci.**9**(1986), no. 4, 665–704. MR**870524**, https://doi.org/10.1155/S0161171286000832**[4]**J. B. Muskat & K. S. Williams,*Cyclotomy of Order Twelve Over*, , Carleton Mathematical Series No. 217, January 1986, 73 pp.**[5]**A. L. Whiteman,*The cyclotomic numbers of order twelve*, Acta Arith.**6**(1960), 53–76. MR**118709**, https://doi.org/10.4064/aa-6-1-53-76

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-87-99761-4

Article copyright:
© Copyright 1987
American Mathematical Society