The stability in $L_ p$ and $W^ 1_ p$ of the $L_ 2$-projection onto finite element function spaces
HTML articles powered by AMS MathViewer
- by M. Crouzeix and V. Thomée PDF
- Math. Comp. 48 (1987), 521-532 Request permission
Abstract:
The stability of the ${L_2}$-projection onto some standard finite element spaces ${V_h}$, considered as a map in ${L_p}$ and $W_p^1$, $1 \leqslant p \leqslant \infty$, is shown under weaker regularity requirements than quasi-uniformity of the triangulations underlying the definitions of the ${V_h}$.References
- C. Bernardi and G. Raugel, Approximation numérique de certaines équations paraboliques non linéaires, RAIRO Anal. Numér. 18 (1984), no. 3, 237–285 (French, with English summary). MR 751759, DOI 10.1051/m2an/1984180302371
- Carl de Boor, A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), no. 136, 765–771. MR 425432, DOI 10.1090/S0025-5718-1976-0425432-1
- C. de Boor, On a max-norm bound for the least-squares spline approximant, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 163–175. MR 649424
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Jean Descloux, On finite element matrices, SIAM J. Numer. Anal. 9 (1972), 260–265. MR 309292, DOI 10.1137/0709025
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193–197. MR 383789, DOI 10.1007/BF01400302
- A. H. Schatz, V. C. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), no. 3, 265–304. MR 562737, DOI 10.1002/cpa.3160330305
- G. O. Thorin, Convexity theorems generalizing those of M. Riesz and Hadamard with some applications, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 9 (1948), 1–58. MR 25529
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 48 (1987), 521-532
- MSC: Primary 41A15; Secondary 41A35, 65N10, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1987-0878688-2
- MathSciNet review: 878688