## The stability in $L_ p$ and $W^ 1_ p$ of the $L_ 2$-projection onto finite element function spaces

HTML articles powered by AMS MathViewer

- by M. Crouzeix and V. Thomée PDF
- Math. Comp.
**48**(1987), 521-532 Request permission

## Abstract:

The stability of the ${L_2}$-projection onto some standard finite element spaces ${V_h}$, considered as a map in ${L_p}$ and $W_p^1$, $1 \leqslant p \leqslant \infty$, is shown under weaker regularity requirements than quasi-uniformity of the triangulations underlying the definitions of the ${V_h}$.## References

- C. Bernardi and G. Raugel,
*Approximation numérique de certaines équations paraboliques non linéaires*, RAIRO Anal. Numér.**18**(1984), no. 3, 237–285 (French, with English summary). MR**751759**, DOI 10.1051/m2an/1984180302371 - Carl de Boor,
*A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio*, Math. Comp.**30**(1976), no. 136, 765–771. MR**425432**, DOI 10.1090/S0025-5718-1976-0425432-1 - C. de Boor,
*On a max-norm bound for the least-squares spline approximant*, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 163–175. MR**649424** - Ph. Clément,
*Approximation by finite element functions using local regularization*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**9**(1975), no. R-2, 77–84 (English, with Loose French summary). MR**0400739** - Jean Descloux,
*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260–265. MR**309292**, DOI 10.1137/0709025 - Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**371077**, DOI 10.1090/S0025-5718-1975-0371077-0 - Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces*, Numer. Math.**23**(1974/75), 193–197. MR**383789**, DOI 10.1007/BF01400302 - A. H. Schatz, V. C. Thomée, and L. B. Wahlbin,
*Maximum norm stability and error estimates in parabolic finite element equations*, Comm. Pure Appl. Math.**33**(1980), no. 3, 265–304. MR**562737**, DOI 10.1002/cpa.3160330305 - G. O. Thorin,
*Convexity theorems generalizing those of M. Riesz and Hadamard with some applications*, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]**9**(1948), 1–58. MR**25529**

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp.
**48**(1987), 521-532 - MSC: Primary 41A15; Secondary 41A35, 65N10, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1987-0878688-2
- MathSciNet review: 878688