## The discrete Galerkin method for integral equations

HTML articles powered by AMS MathViewer

- by Kendall Atkinson and Alex Bogomolny PDF
- Math. Comp.
**48**(1987), 595-616 Request permission

## Abstract:

A general theory is given for discretized versions of the Galerkin method for solving Fredholm integral equations of the second kind. The discretized Galerkin method is obtained from using numerical integration to evaluate the integrals occurring in the Galerkin method. The theoretical framework that is given parallels that of the regular Galerkin method, including the error analysis of the superconvergence of the iterated Galerkin and discrete Galerkin solutions. In some cases, the iterated discrete Galerkin solution is shown to coincide with the Nyström solution with the same numerical integration method. The paper concludes with applications to finite element Galerkin methods.## References

- Philip M. Anselone,
*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. With an appendix by Joel Davis. MR**0443383** - Uri Ascher,
*Discrete least squares approximations for ordinary differential equations*, SIAM J. Numer. Anal.**15**(1978), no. 3, 478–496. MR**491701**, DOI 10.1137/0715031 - Kendall E. Atkinson,
*The numerical solutions of the eigenvalue problem for compact integral operators*, Trans. Amer. Math. Soc.**129**(1967), 458–465. MR**220105**, DOI 10.1090/S0002-9947-1967-0220105-3 - Kendall Atkinson,
*Convergence rates for approximate eigenvalues of compact integral operators*, SIAM J. Numer. Anal.**12**(1975), 213–222. MR**438746**, DOI 10.1137/0712020 - Kendall E. Atkinson,
*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585** - Kendall E. Atkinson,
*An introduction to numerical analysis*, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR**504339** - Kendall E. Atkinson,
*Piecewise polynomial collocation for integral equations on surfaces in three dimensions*, J. Integral Equations**9**(1985), no. 1, suppl., 25–48. MR**792418** - Kendall E. Atkinson,
*Solving integral equations on surfaces in space*, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Internat. Schriftenreihe Numer. Math., vol. 73, Birkhäuser, Basel, 1985, pp. 20–43. MR**882554** - K. Atkinson, I. Graham, and I. Sloan,
*Piecewise continuous collocation for integral equations*, SIAM J. Numer. Anal.**20**(1983), no. 1, 172–186. MR**687375**, DOI 10.1137/0720012 - Carl de Boor,
*A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio*, Math. Comp.**30**(1976), no. 136, 765–771. MR**425432**, DOI 10.1090/S0025-5718-1976-0425432-1 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174**
G. A. Chandler, - G. A. Chandler,
*Superconvergence for second kind integral equations*, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978) Monographs Textbooks Mech. Solids Fluids: Mech. Anal., vol. 6, Nijhoff, The Hague, 1980, pp. 103–117. MR**582986** - Françoise Chatelin,
*Spectral approximation of linear operators*, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With a foreword by P. Henrici; With solutions to exercises by Mario Ahués. MR**716134** - Françoise Chatelin and Rachid Lebbar,
*Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem*, J. Integral Equations**6**(1984), no. 1, 71–91. MR**727937** - Philip J. Davis and Philip Rabinowitz,
*Methods of numerical integration*, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR**760629** - Jean Descloux,
*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260–265. MR**309292**, DOI 10.1137/0709025 - Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**371077**, DOI 10.1090/S0025-5718-1975-0371077-0 - Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces*, Numer. Math.**23**(1974/75), 193–197. MR**383789**, DOI 10.1007/BF01400302 - R. J. Herbold, M. H. Schultz, and R. S. Varga,
*The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques*, Aequationes Math.**3**(1969), 247–270. MR**261798**, DOI 10.1007/BF01817445 - G. C. Hsiao, P. Kopp, and W. L. Wendland,
*A Galerkin collocation method for some integral equations of the first kind*, Computing**25**(1980), no. 2, 89–130 (English, with German summary). MR**620387**, DOI 10.1007/BF02259638 - G. C. Hsiao and W. L. Wendland,
*The Aubin-Nitsche lemma for integral equations*, J. Integral Equations**3**(1981), no. 4, 299–315. MR**634453**
S. Joe, - J. N. Lyness and D. Jespersen,
*Moderate degree symmetric quadrature rules for the triangle*, J. Inst. Math. Appl.**15**(1975), 19–32. MR**378368** - John E. Osborn,
*Spectral approximation for compact operators*, Math. Comput.**29**(1975), 712–725. MR**0383117**, DOI 10.1090/S0025-5718-1975-0383117-3 - Gerard R. Richter,
*Superconvergence of piecewise polynomial Galerkin approximations, for Fredholm integral equations of the second kind*, Numer. Math.**31**(1978/79), no. 1, 63–70. MR**508588**, DOI 10.1007/BF01396014 - Larry L. Schumaker,
*Spline functions: basic theory*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR**606200** - Ian H. Sloan,
*Superconvergence and the Galerkin method for integral equations of the second kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 197–207. MR**755355** - Ian H. Sloan and Vidar Thomée,
*Superconvergence of the Galerkin iterates for integral equations of the second kind*, J. Integral Equations**9**(1985), no. 1, 1–23. MR**793101** - A. Spence and K. S. Thomas,
*On superconvergence properties of Galerkin’s method for compact operator equations*, IMA J. Numer. Anal.**3**(1983), no. 3, 253–271. MR**723049**, DOI 10.1093/imanum/3.3.253 - A. H. Stroud,
*Approximate calculation of multiple integrals*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0327006** - Robert Whitley,
*The stability of finite rank methods with applications to integral equations*, SIAM J. Numer. Anal.**23**(1986), no. 1, 118–134. MR**821909**, DOI 10.1137/0723008

*Superconvergence of Numerical Solutions to Second Kind Integral Equations*, Ph. D. thesis, Australian National University, Canberra, 1979.

*The Numerical Solution of Second Kind Fredholm Integral Equations*, Ph. D. thesis, Univ. of New South Wales, Sydney, Australia, 1985.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp.
**48**(1987), 595-616 - MSC: Primary 65R20
- DOI: https://doi.org/10.1090/S0025-5718-1987-0878693-6
- MathSciNet review: 878693