Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Equivalence of Nyström’s method and Fourier methods for the numerical solution of Fredholm integral equations
HTML articles powered by AMS MathViewer

by Jean-Paul Berrut and Manfred R. Trummer PDF
Math. Comp. 48 (1987), 617-623 Request permission


Nyström’s method with the trapezoidal rule, and the Fourier method, produce the same approximation to the solution of an integral equation at the collocation points for Nyström’s method. This equivalence allows the derivation of error estimates for Nyström’s method, and gives an intuitive explanation for its good performance in the periodic case. The equivalence holds for Fourier methods with arbitrary orthogonal basis functions. The quadrature rule for numerical integration must have the collocation points as abscissae, and must yield the exact entries of the Gramian matrix of the orthogonal basis.
    M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585
  • J.-P. Berrut, Integralgleichungen und Fourier-Methoden zur numerischen konformen Abbildung, Ph. D. Thesis, ETH Zürich, 1985.
  • Jean-Paul Berrut, A Fredholm integral equation of the second kind for conformal mapping, J. Comput. Appl. Math. 14 (1986), no. 1-2, 99–110. Special issue on numerical conformal mapping. MR 829032, DOI 10.1016/0377-0427(86)90132-9
  • Jean-Paul Berrut, Baryzentrische Formeln zur trigonometrischen Interpolation. I, Z. Angew. Math. Phys. 35 (1984), no. 1, 91–105 (German, with English and French summaries). MR 753088, DOI 10.1007/BF00945179
  • L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985. MR 837187, DOI 10.1017/CBO9780511569609
  • Peter Henrici, Fast Fourier methods in computational complex analysis, SIAM Rev. 21 (1979), no. 4, 481–527. MR 545882, DOI 10.1137/1021093
  • Peter Henrici, Essentials of numerical analysis with pocket calculator demonstrations, John Wiley & Sons, Inc., New York, 1982. MR 655251
  • Peter Henrici, Barycentric formulas for interpolating trigonometric polynomials and their conjugates, Numer. Math. 33 (1979), no. 2, 225–234. MR 549451, DOI 10.1007/BF01399556
  • Norberto Kerzman and Manfred R. Trummer, Numerical conformal mapping via the Szegő kernel, J. Comput. Appl. Math. 14 (1986), no. 1-2, 111–123. Special issue on numerical conformal mapping. MR 829033, DOI 10.1016/0377-0427(86)90133-0
  • P. M. Prenter, A collection method for the numerical solution of integral equations, SIAM J. Numer. Anal. 10 (1973), 570–581. MR 327064, DOI 10.1137/0710051
  • Lothar Reichel, A fast method for solving certain integral equations of the first kind with application to conformal mapping, J. Comput. Appl. Math. 14 (1986), no. 1-2, 125–142. Special issue on numerical conformal mapping. MR 829034, DOI 10.1016/0377-0427(86)90134-2
  • M. Schleiff, Über Näherungsverfahren zur Lösung einer singulären linearen Integrodifferentialgleichung, Z. Angew. Math. Mech. 48 (1968), 477–486 (German, with English and Russian summaries). MR 242397, DOI 10.1002/zamm.19680480708
  • Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044
  • George T. Symm, An integral equation method in conformal mapping, Numer. Math. 9 (1966), 250–258. MR 207240, DOI 10.1007/BF02162088
  • Manfred R. Trummer, An efficient implementation of a conformal mapping method based on the Szegő kernel, SIAM J. Numer. Anal. 23 (1986), no. 4, 853–872. MR 849287, DOI 10.1137/0723055
Similar Articles
Additional Information
  • © Copyright 1987 American Mathematical Society
  • Journal: Math. Comp. 48 (1987), 617-623
  • MSC: Primary 45L10; Secondary 42A10, 65R20
  • DOI:
  • MathSciNet review: 878694