Cardinal interpolation by multivariate splines
HTML articles powered by AMS MathViewer
- by C. K. Chui, K. Jetter and J. D. Ward PDF
- Math. Comp. 48 (1987), 711-724 Request permission
Abstract:
The purpose of this paper is to investigate cardinal interpolation using locally supported piecewise polynomials. In particular, the notion of a commutator is introduced and its connection with the Marsden identity is observed. The order of a commutator is shown to be equivalent to the Strang and Fix conditions that arise in the study of the local approximation orders using quasi-interpolants. We also prove that scaled cardinal interpolants give these local approximation orders.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- C. de Boor and K. Höllig, $B$-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99–115. MR 729403, DOI 10.1007/BF02786872
- Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Bivariate cardinal interpolation by splines on a three-direction mesh, Illinois J. Math. 29 (1985), no. 4, 533–566. MR 806466
- C. de Boor and R.-Q. Jia, Controlled approximation and a characterization of the local approximation order, Proc. Amer. Math. Soc. 95 (1985), no. 4, 547–553. MR 810161, DOI 10.1090/S0002-9939-1985-0810161-X
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
- Wolfgang Dahmen and Charles A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52/53 (1983), 217–234. MR 709352, DOI 10.1016/0024-3795(83)80015-9
- Wolfgang Dahmen and Charles A. Micchelli, Recent progress in multivariate splines, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 27–121. MR 754343
- Wolfgang Dahmen and Charles A. Micchelli, On the approximation order from certain multivariate spline spaces, J. Austral. Math. Soc. Ser. B 26 (1984), no. 2, 233–246. MR 765640, DOI 10.1017/S033427000000446X P. O. Frederickson, Generalized Triangular Splines, Mathematics Report 7-71, Lakehead Univ., 1971.
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- I. J. Schoenberg, Cardinal spline interpolation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0420078
- I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167–206. MR 257616, DOI 10.1016/0021-9045(69)90040-9
- I. J. Schoenberg, Cardinal interpolation and spline functions. II. Interpolation of data of power growth, J. Approximation Theory 6 (1972), 404–420. MR 340899, DOI 10.1016/0021-9045(72)90048-2
- Larry L. Schumaker, Spline functions: basic theory, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR 606200 G. Strang & G. Fix, "A Fourier analysis of the finite element variational method," C.I.M.E. II Cilo 1971, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), 1973, pp. 793-840.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 48 (1987), 711-724
- MSC: Primary 41A05; Secondary 41A15, 41A63
- DOI: https://doi.org/10.1090/S0025-5718-1987-0878701-2
- MathSciNet review: 878701