Computation of character decompositions of class functions on compact semisimple Lie groups
Authors:
R. V. Moody and J. Patera
Journal:
Math. Comp. 48 (1987), 799-827
MSC:
Primary 22E46
DOI:
https://doi.org/10.1090/S0025-5718-1987-0878707-3
MathSciNet review:
878707
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A new algorithm is described for splitting class functions of an arbitrary semisimple compact Lie group K into sums of irreducible characters. The method is based on the use of elements of finite order (EFO) in K and is applicable to a number of problems, including decompositions of tensor products and various symmetry classes of tensors, as well as branching rules in group-subgroup reductions. The main feature is the construction of a decomposition matrix D, computed once and for all for a given range of problems and for a given K, which then reduces any particular splitting to a simple matrix multiplication. Determination of D requires selection of a suitable set S of conjugacy classes of EFO representing a finite subgroup of a maximal torus T of K and the evaluation of (Weyl group) orbit sums on S. In fact, the evaluation of D can be coupled with the evaluation of the orbit sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is illustrated by some extensive examples of tensor product decompositions in ${E_6}$. Modular arithmetic allows all computations to be performed exactly.
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Murray R. Bremner, Fast computation of weight multiplicities, J. Symbolic Comput. 2 (1986), no. 4, 357–362. MR 872785, DOI https://doi.org/10.1016/S0747-7171%2886%2980003-7
- M. R. Bremner, R. V. Moody, and J. Patera, Tables of dominant weight multiplicities for representations of simple Lie algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 90, Marcel Dekker, Inc., New York, 1985. MR 779462 J. Conway & L. Queen, Computing the Character Table of a Lie Group, Proc. Conf. on Finite Groups, Montreal, 1982.
- John D. Dixon, High speed computation of group characters, Numer. Math. 10 (1967), 446–450. MR 224726, DOI https://doi.org/10.1007/BF02162877
- Dragomir Ž. Djoković, On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups, Proc. Amer. Math. Soc. 80 (1980), no. 1, 181–184. MR 574532, DOI https://doi.org/10.1090/S0002-9939-1980-0574532-7
- Dragomir Ž. Djoković, On conjugacy classes of elements of finite order in complex semisimple Lie groups, J. Pure Appl. Algebra 35 (1985), no. 1, 1–13. MR 772157, DOI https://doi.org/10.1016/0022-4049%2885%2990026-X E. B. Dynkin, "Semisimple subalgebras of semisimple Lie algebras," Amer. Math. Soc. Transl. (2), 1957, pp. 111-244. E. B. Dynkin, "Maximal subgroups of the classical groups," Suppl. 23, Amer. Math. Soc. Transl. (2), v. 6, 1957, pp. 245-378. M. J. Englefield, Tabulation of Kronecker products of representations of F4, E6, and E7, Preprint, Univ. of Southampton, Math. N57, 1981.
- V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94–96 (Russian). MR 0251091
- W. G. McKay, R. V. Moody, and J. Patera, Tables of $E_8$ characters and decompositions of plethysms, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 227–263. MR 832202
- W. G. McKay, R. V. Moody, and J. Patera, Decomposition of tensor products of $E_8$ representations, Algebras Groups Geom. 3 (1986), no. 3, 286–328. MR 900487
- W. G. McKay and J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Lecture Notes in Pure and Applied Mathematics, vol. 69, Marcel Dekker, Inc., New York, 1981. MR 604363
- Robert V. Moody, Root systems of hyperbolic type, Adv. in Math. 33 (1979), no. 2, 144–160. MR 544847, DOI https://doi.org/10.1016/S0001-8708%2879%2980003-1
- R. V. Moody and J. Patera, Fast recursion formula for weight multiplicities, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 237–242. MR 656202, DOI https://doi.org/10.1090/S0273-0979-1982-15021-2
- R. V. Moody and J. Patera, Characters of elements of finite order in Lie groups, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 359–383. MR 752042, DOI https://doi.org/10.1137/0605037
- R. V. Moody, J. Patera, and R. T. Sharp, Character generators for elements of finite order in simple Lie groups $A_{1},$ $A_{2},$ $A_{3},$ $B_{2},$ and $G_{2}$, J. Math. Phys. 24 (1983), no. 10, 2387–2396. MR 718223, DOI https://doi.org/10.1063/1.525618 R. V. Moody, J. Patera & R. T. Sharp, "Elements of finite order and symmetry classes of tensors of simple Lie groups." (In preparation.)
- Henri J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer Series in Information Sciences, vol. 2, Springer-Verlag, Berlin-New York, 1981. MR 606376
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI https://doi.org/10.2307/1970351
- A. Pianzola, On elements of finite order and cyclotomic fields, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 351–355. MR 832209 A. J. Pianzola, "On the arithmetic of the representation ring and elements of finite order in Lie groups," J. Algebra. (To appear.) I. Schur, Über die Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901. Collected Works, Vol. I, Springer-Verlag, New York, 1973.
- R. Slansky, Group theory for unified model building, Phys. Rep. 79 (1981), no. 1, 1–128. MR 639396, DOI https://doi.org/10.1016/0370-1573%2881%2990092-2
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI https://doi.org/10.1007/BF01390173
- B. G. Wybourne and M. J. Bowick, Basic properties of the exceptional Lie groups, Austral. J. Phys. 30 (1977), no. 3, 259–286. MR 462278
Retrieve articles in Mathematics of Computation with MSC: 22E46
Retrieve articles in all journals with MSC: 22E46
Additional Information
Article copyright:
© Copyright 1987
American Mathematical Society