Computation of character decompositions of class functions on compact semisimple Lie groups

Authors:
R. V. Moody and J. Patera

Journal:
Math. Comp. **48** (1987), 799-827

MSC:
Primary 22E46

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878707-3

MathSciNet review:
878707

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new algorithm is described for splitting class functions of an arbitrary semisimple compact Lie group *K* into sums of irreducible characters. The method is based on the use of elements of finite order (EFO) in *K* and is applicable to a number of problems, including decompositions of tensor products and various symmetry classes of tensors, as well as branching rules in group-subgroup reductions. The main feature is the construction of a decomposition matrix *D*, computed once and for all for a given range of problems and for a given *K*, which then reduces any particular splitting to a simple matrix multiplication. Determination of *D* requires selection of a suitable set *S* of conjugacy classes of EFO representing a finite subgroup of a maximal torus *T* of *K* and the evaluation of (Weyl group) orbit sums on *S*. In fact, the evaluation of *D* can be coupled with the evaluation of the orbit sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is illustrated by some extensive examples of tensor product decompositions in . Modular arithmetic allows all computations to be performed exactly.

**[1]**J. Frank Adams,*Lectures on Lie groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0252560****[2]**N. Bourbaki,*Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines*, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR**0240238****[3]**Murray R. Bremner,*Fast computation of weight multiplicities*, J. Symbolic Comput.**2**(1986), no. 4, 357–362. MR**872785**, https://doi.org/10.1016/S0747-7171(86)80003-7**[4]**M. R. Bremner, R. V. Moody, and J. Patera,*Tables of dominant weight multiplicities for representations of simple Lie algebras*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 90, Marcel Dekker, Inc., New York, 1985. MR**779462****[5]**J. Conway & L. Queen,*Computing the Character Table of a Lie Group*, Proc. Conf. on Finite Groups, Montreal, 1982.**[6]**John D. Dixon,*High speed computation of group characters*, Numer. Math.**10**(1967), 446–450. MR**224726**, https://doi.org/10.1007/BF02162877**[7]**Dragomir Ž. Djoković,*On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups*, Proc. Amer. Math. Soc.**80**(1980), no. 1, 181–184. MR**574532**, https://doi.org/10.1090/S0002-9939-1980-0574532-7**[8]**Dragomir Ž. Djoković,*On conjugacy classes of elements of finite order in complex semisimple Lie groups*, J. Pure Appl. Algebra**35**(1985), no. 1, 1–13. MR**772157**, https://doi.org/10.1016/0022-4049(85)90026-X**[9]**E. B. Dynkin, "Semisimple subalgebras of semisimple Lie algebras,"*Amer. Math. Soc. Transl.*(2), 1957, pp. 111-244.**[10]**E. B. Dynkin, "Maximal subgroups of the classical groups," Suppl. 23,*Amer. Math. Soc. Transl.*(2), v. 6, 1957, pp. 245-378.**[11]**M. J. Englefield,*Tabulation of Kronecker products of representations of F*4,*E*6,*and E*7, Preprint, Univ. of Southampton, Math. N57, 1981.**[12]**V. G. Kac,*Automorphisms of finite order of semisimple Lie algebras*, Funkcional. Anal. i Priložen.**3**(1969), no. 3, 94–96 (Russian). MR**0251091****[13]**W. G. McKay, R. V. Moody, and J. Patera,*Tables of 𝐸₈ characters and decompositions of plethysms*, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 227–263. MR**832202****[14]**W. G. McKay, R. V. Moody, and J. Patera,*Decomposition of tensor products of 𝐸₈ representations*, Algebras Groups Geom.**3**(1986), no. 3, 286–328. MR**900487****[15]**W. G. McKay and J. Patera,*Tables of dimensions, indices, and branching rules for representations of simple Lie algebras*, Lecture Notes in Pure and Applied Mathematics, vol. 69, Marcel Dekker, Inc., New York, 1981. MR**604363****[16]**Robert V. Moody,*Root systems of hyperbolic type*, Adv. in Math.**33**(1979), no. 2, 144–160. MR**544847**, https://doi.org/10.1016/S0001-8708(79)80003-1**[17]**R. V. Moody and J. Patera,*Fast recursion formula for weight multiplicities*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 1, 237–242. MR**656202**, https://doi.org/10.1090/S0273-0979-1982-15021-2**[18]**R. V. Moody and J. Patera,*Characters of elements of finite order in Lie groups*, SIAM J. Algebraic Discrete Methods**5**(1984), no. 3, 359–383. MR**752042**, https://doi.org/10.1137/0605037**[19]**R. V. Moody, J. Patera, and R. T. Sharp,*Character generators for elements of finite order in simple Lie groups 𝐴₁, 𝐴₂, 𝐴₃, 𝐵₂, and 𝐺₂*, J. Math. Phys.**24**(1983), no. 10, 2387–2396. MR**718223**, https://doi.org/10.1063/1.525618**[20]**R. V. Moody, J. Patera & R. T. Sharp, "Elements of finite order and symmetry classes of tensors of simple Lie groups." (In preparation.)**[21]**Henri J. Nussbaumer,*Fast Fourier transform and convolution algorithms*, Springer Series in Information Sciences, vol. 2, Springer-Verlag, Berlin-New York, 1981. MR**606376****[22]**K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan,*Representations of complex semi-simple Lie groups and Lie algebras*, Ann. of Math. (2)**85**(1967), 383–429. MR**225936**, https://doi.org/10.2307/1970351**[23]**A. Pianzola,*On elements of finite order and cyclotomic fields*, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 351–355. MR**832209****[24]**A. J. Pianzola, "On the arithmetic of the representation ring and elements of finite order in Lie groups,"*J. Algebra*. (To appear.)**[25]**I. Schur,*Über die Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen*, Dissertation, Berlin, 1901. Collected Works, Vol. I, Springer-Verlag, New York, 1973.**[26]**R. Slansky,*Group theory for unified model building*, Phys. Rep.**79**(1981), no. 1, 1–128. MR**639396**, https://doi.org/10.1016/0370-1573(81)90092-2**[27]**T. A. Springer,*Regular elements of finite reflection groups*, Invent. Math.**25**(1974), 159–198. MR**354894**, https://doi.org/10.1007/BF01390173**[28]**B. G. Wybourne and M. J. Bowick,*Basic properties of the exceptional Lie groups*, Aust. J. Phys.**30**(1977), no. 3, 259–286. MR**0462278**

Retrieve articles in *Mathematics of Computation*
with MSC:
22E46

Retrieve articles in all journals with MSC: 22E46

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878707-3

Article copyright:
© Copyright 1987
American Mathematical Society