Asymptotic expansions of integrals of certain rapidly oscillating functions
HTML articles powered by AMS MathViewer
- by U. Banerjee, L. J. Lardy and A. Lutoborski PDF
- Math. Comp. 49 (1987), 243-249 Request permission
Abstract:
An expansion in terms of powers of ${m^{ - 1}}$ is given for integrals of the form $\smallint _0^1f(x)\bar w(mx) dx$, where m is a positive integer, $\bar w(mx)$ is an integrable rapidly oscillating function with period ${m^{ - 1}}$, and $f(x)$ is a smooth function.References
-
M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
- Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
- Philip J. Davis, Interpolation and approximation, Dover Publications, Inc., New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. MR 0380189
- Vladimir Ivanovich Krylov, Approximate calculation of integrals, The Macmillan Company, New York-London, 1962, 1962. Translated by Arthur H. Stroud. MR 0144464
- J. N. Lyness, The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. I. Functions whose early derivatives are continuous, Math. Comp. 24 (1970), 101–135. MR 260230, DOI 10.1090/S0025-5718-1970-0260230-8
- Hans J. Stetter, Numerical approximation of Fourier-transforms, Numer. Math. 8 (1966), 235–249. MR 198716, DOI 10.1007/BF02162560
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 49 (1987), 243-249
- MSC: Primary 41A55; Secondary 41A60
- DOI: https://doi.org/10.1090/S0025-5718-1987-0890265-6
- MathSciNet review: 890265