On the discretization in time of semilinear parabolic equations with nonsmooth initial data
HTML articles powered by AMS MathViewer
- by Michel Crouzeix and Vidar Thomée PDF
- Math. Comp. 49 (1987), 359-377 Request permission
Abstract:
Single-step discretization methods are considered for equations of the form ${u_t} + Au = f(t,u)$, where A is a linear positive definite operator in a Hilbert space H. It is shown that if the method is consistent with the differential equation then the convergence is essentially of first order in the stepsize, even if the initial data v are only in H, but also that, in contrast to the situation in the linear homogeneous case, higher-order convergence is not possible in general without further assumptions on v.References
- Garth A. Baker, James H. Bramble, and Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), no. 140, 818–847. MR 448947, DOI 10.1090/S0025-5718-1977-0448947-X M. Crouzeix, Sur l’Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thèse, Université Paris VI, 1975.
- Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 331–357. MR 906175, DOI 10.1090/S0025-5718-1987-0906175-1
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 49 (1987), 359-377
- MSC: Primary 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1987-0906176-3
- MathSciNet review: 906176