Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The F-E-M test for convergence of nonconforming finite elements
HTML articles powered by AMS MathViewer

by Zhong Ci Shi PDF
Math. Comp. 49 (1987), 391-405 Request permission

Abstract:

A new convergence test, the F-E-M-Test, is established for the method of nonconforming finite elements. The F-E-M-Test is simple to apply, it checks only the local properties of shape functions along each interface or on each element. The test is valid for a wide class of nonconforming elements in practical applications.
References
    G. P. Bazeley, Y. K. Cheung, B. M. Irons & O. C. Zienkiewicz, Triangular Element in Plate Bending. Conforming and Nonconforming Elements, Proc. 1st Conf. Matrix Methods in Structural Mechanics, AFFDL-TR-CC-80, Wright-Patterson Air Force Base, Ohio, 1965, pp. 547-576.
  • B. Fraeijs de Veubeke, Variational principles and the patch test, Internat. J. Numer. Methods Engrg. 8 (1974), 783–801. MR 375911, DOI 10.1002/nme.1620080408
  • N. Herrmann, Bemerkungen zum Patch-Test, Second Workshop Diskretisierungen in der Kontinuumsmechanik, Bad Honnef, 1985.
  • Bruce M. Irons and Abdur Razzaque, Experience with the patch test for convergence of finite elements, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 557–587. MR 0423839
  • G. Sander and P. Beckers, The influence of the choice of connectors in the finite element method, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 316–342. MR 0502734
  • Zhong Ci Shi, An explicit analysis of Stummel’s patch test examples, Internat. J. Numer. Methods Engrg. 20 (1984), no. 7, 1233–1246. MR 751335, DOI 10.1002/nme.1620200705
  • Zhong Ci Shi, On the convergence properties of the quadrilateral elements of Sander and Beckers, Math. Comp. 42 (1984), no. 166, 493–504. MR 736448, DOI 10.1090/S0025-5718-1984-0736448-4
  • Zhong Ci Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984), no. 3, 349–361. MR 757491, DOI 10.1007/BF01405567
  • Zhong Ci Shi, The generalized patch test for Zienkiewicz’s triangles, J. Comput. Math. 2 (1984), no. 3, 279–286. MR 815422
  • Zhong Ci Shi, Convergence properties of two nonconforming finite elements, Comput. Methods Appl. Mech. Engrg. 48 (1985), no. 2, 123–137. MR 784479, DOI 10.1016/0045-7825(85)90100-8
  • Zhong Ci Shi, On the convergence of nonconforming finite element, Proceedings of the 1984 Beijing symposium on differential geometry and differential equations, Sci. Press Beijing, Beijing, 1985, pp. 78–95. MR 824490
  • Z. C. Shi, On Stummel’s Examples to the Patch Test, University of Frankfurt, 1985. (Preprint.) Z. C. Shi & F. Stummel, Certain Convergence Criteria for Nonconforming Finite Elements, Workshop Diskretisierungen in der Kontinuumsmechanik, Bad Honnef, 1983. J. C. Simo, "A note on the Stummel problem." (To appear.) B. Specht, "Modified shape functions for the three node plate bending element passing the patch test." (To appear.)
  • Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689–710. MR 0413554
  • Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377
  • Friedrich Stummel, The generalized patch test, SIAM J. Numer. Anal. 16 (1979), no. 3, 449–471. MR 530481, DOI 10.1137/0716037
  • F. Stummel, "The limitations of the patch test," Internat. J. Numer. Methods Engrg., v. 15, 1980, pp. 177-188.
  • Friedrich Stummel, Basic compactness properties of nonconforming and hybrid finite element spaces, RAIRO Anal. Numér. 14 (1980), no. 1, 81–115 (English, with French summary). MR 566091, DOI 10.1051/m2an/1980140100811
  • R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan, The patch test—a condition for assessing FEM convergence, Internat. J. Numer. Methods Engrg. 22 (1986), no. 1, 39–62. MR 831836, DOI 10.1002/nme.1620220105
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65N30
  • Retrieve articles in all journals with MSC: 65N30
Additional Information
  • © Copyright 1987 American Mathematical Society
  • Journal: Math. Comp. 49 (1987), 391-405
  • MSC: Primary 65N30
  • DOI: https://doi.org/10.1090/S0025-5718-1987-0906178-7
  • MathSciNet review: 906178