The FEM test for convergence of nonconforming finite elements
Author:
Zhong Ci Shi
Journal:
Math. Comp. 49 (1987), 391405
MSC:
Primary 65N30
DOI:
https://doi.org/10.1090/S00255718198709061787
MathSciNet review:
906178
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: A new convergence test, the FEMTest, is established for the method of nonconforming finite elements. The FEMTest is simple to apply, it checks only the local properties of shape functions along each interface or on each element. The test is valid for a wide class of nonconforming elements in practical applications.

G. P. Bazeley, Y. K. Cheung, B. M. Irons & O. C. Zienkiewicz, Triangular Element in Plate Bending. Conforming and Nonconforming Elements, Proc. 1st Conf. Matrix Methods in Structural Mechanics, AFFDLTRCC80, WrightPatterson Air Force Base, Ohio, 1965, pp. 547576.
 B. Fraeijs de Veubeke, Variational principles and the patch test, Internat. J. Numer. Methods Engrg. 8 (1974), 783–801. MR 375911, DOI https://doi.org/10.1002/nme.1620080408 N. Herrmann, Bemerkungen zum PatchTest, Second Workshop Diskretisierungen in der Kontinuumsmechanik, Bad Honnef, 1985.
 Bruce M. Irons and Abdur Razzaque, Experience with the patch test for convergence of finite elements, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 557–587. MR 0423839
 G. Sander and P. Beckers, The influence of the choice of connectors in the finite element method, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 316–342. Lecture Notes in Math., Vol. 606. MR 0502734
 Zhong Ci Shi, An explicit analysis of Stummel’s patch test examples, Internat. J. Numer. Methods Engrg. 20 (1984), no. 7, 1233–1246. MR 751335, DOI https://doi.org/10.1002/nme.1620200705
 Zhong Ci Shi, On the convergence properties of the quadrilateral elements of Sander and Beckers, Math. Comp. 42 (1984), no. 166, 493–504. MR 736448, DOI https://doi.org/10.1090/S00255718198407364484
 Zhong Ci Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984), no. 3, 349–361. MR 757491, DOI https://doi.org/10.1007/BF01405567
 Zhong Ci Shi, The generalized patch test for Zienkiewicz’s triangles, J. Comput. Math. 2 (1984), no. 3, 279–286. MR 815422
 Zhong Ci Shi, Convergence properties of two nonconforming finite elements, Comput. Methods Appl. Mech. Engrg. 48 (1985), no. 2, 123–137. MR 784479, DOI https://doi.org/10.1016/00457825%2885%29901008
 Zhong Ci Shi, On the convergence of nonconforming finite element, Proceedings of the 1984 Beijing symposium on differential geometry and differential equations, Sci. Press Beijing, Beijing, 1985, pp. 78–95. MR 824490 Z. C. Shi, On Stummel’s Examples to the Patch Test, University of Frankfurt, 1985. (Preprint.) Z. C. Shi & F. Stummel, Certain Convergence Criteria for Nonconforming Finite Elements, Workshop Diskretisierungen in der Kontinuumsmechanik, Bad Honnef, 1983. J. C. Simo, "A note on the Stummel problem." (To appear.) B. Specht, "Modified shape functions for the three node plate bending element passing the patch test." (To appear.)
 Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689–710. MR 0413554
 Gilbert Strang and George J. Fix, An analysis of the finite element method, PrenticeHall, Inc., Englewood Cliffs, N. J., 1973. PrenticeHall Series in Automatic Computation. MR 0443377
 Friedrich Stummel, The generalized patch test, SIAM J. Numer. Anal. 16 (1979), no. 3, 449–471. MR 530481, DOI https://doi.org/10.1137/0716037 F. Stummel, "The limitations of the patch test," Internat. J. Numer. Methods Engrg., v. 15, 1980, pp. 177188.
 Friedrich Stummel, Basic compactness properties of nonconforming and hybrid finite element spaces, RAIRO Anal. Numér. 14 (1980), no. 1, 81–115 (English, with French summary). MR 566091
 R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan, The patch test—a condition for assessing FEM convergence, Internat. J. Numer. Methods Engrg. 22 (1986), no. 1, 39–62. MR 831836, DOI https://doi.org/10.1002/nme.1620220105
Retrieve articles in Mathematics of Computation with MSC: 65N30
Retrieve articles in all journals with MSC: 65N30
Additional Information
Article copyright:
© Copyright 1987
American Mathematical Society