## An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates

HTML articles powered by AMS MathViewer

- by Helmut Gfrerer PDF
- Math. Comp.
**49**(1987), 507-522 Request permission

## Abstract:

We propose an a posteriori parameter choice for ordinary and iterated Tikhonov regularization that leads to optimal rates of convergence towards the best approximate solution of an ill-posed linear operator equation in the presence of noisy data. Numerical examples are given.## References

- Rémy Arcangeli,
*Pseudo-solution de l’équation $Ax=y$*, C. R. Acad. Sci. Paris Sér. A-B**263**(1966), A282–A285 (French). MR**203457** - R. Courant and D. Hilbert,
*Methoden der mathematischen Physik. I*, Heidelberger Taschenbücher, Band 30, Springer-Verlag, Berlin-New York, 1968 (German). Dritte Auflage. MR**0344038** - Heinz W. Engl,
*Necessary and sufficient conditions for convergence of regularization methods for solving linear operator equations of the first kind*, Numer. Funct. Anal. Optim.**3**(1981), no. 2, 201–222. MR**627122**, DOI 10.1080/01630568108816087 - H. W. Engl,
*Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates*, J. Optim. Theory Appl.**52**(1987), no. 2, 209–215. MR**879198**, DOI 10.1007/BF00941281 - Heinz W. Engl,
*On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems*, J. Approx. Theory**49**(1987), no. 1, 55–63. MR**870549**, DOI 10.1016/0021-9045(87)90113-4 - Heinz W. Engl and Andreas Neubauer,
*An improved version of Marti’s method for solving ill-posed linear integral equations*, Math. Comp.**45**(1985), no. 172, 405–416. MR**804932**, DOI 10.1090/S0025-5718-1985-0804932-1 - Gene H. Golub and Charles F. Van Loan,
*Matrix computations*, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103** - Charles W. Groetsch,
*Elements of applicable functional analysis*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 55, Marcel Dekker, Inc., New York, 1980. MR**569746** - C. W. Groetsch, J. T. King, and D. Murio,
*Asymptotic analysis of a finite element method for Fredholm equations of the first kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 1–11. MR**755337**
C. W. Groetsch, "Comments on Morozov’s discrepancy principle," in - C. W. Groetsch,
*On the asymptotic order of accuracy of Tikhonov regularization*, J. Optim. Theory Appl.**41**(1983), no. 2, 293–298. MR**720775**, DOI 10.1007/BF00935225 - C. W. Groetsch,
*The theory of Tikhonov regularization for Fredholm equations of the first kind*, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**742928** - Charles W. Groetsch and Eberhard Schock,
*Asymptotic convergence rate of Arcangeli’s method for ill-posed problems*, Applicable Anal.**18**(1984), no. 3, 175–182. MR**767499**, DOI 10.1080/00036818408839519 - J. Thomas King and David Chillingworth,
*Approximation of generalized inverses by iterated regularization*, Numer. Funct. Anal. Optim.**1**(1979), no. 5, 499–513. MR**546129**, DOI 10.1080/01630567908816031 - J. T. Marti,
*An algorithm for computing minimum norm solutions of Fredholm integral equations of the first kind*, SIAM J. Numer. Anal.**15**(1978), no. 6, 1071–1076. MR**512683**, DOI 10.1137/0715071 - V. A. Morozov,
*On the solution of functional equations by the method of regularization*, Soviet Math. Dokl.**7**(1966), 414–417. MR**0208819**
M. Z. Nashed (Editor), - E. Schock,
*On the asymptotic order of accuracy of Tikhonov regularization*, J. Optim. Theory Appl.**44**(1984), no. 1, 95–104. MR**764866**, DOI 10.1007/BF00934896 - Eberhard Schock,
*Parameter choice by discrepancy principles for the approximate solution of ill-posed problems*, Integral Equations Operator Theory**7**(1984), no. 6, 895–898. MR**774730**, DOI 10.1007/BF01195873 - T. I. Seidman,
*Nonconvergence results for the application of least-squares estimation to ill-posed problems*, J. Optim. Theory Appl.**30**(1980), no. 4, 535–547. MR**572154**, DOI 10.1007/BF01686719 - J. Stoer and R. Bulirsch,
*Introduction to numerical analysis*, Springer-Verlag, New York-Heidelberg, 1980. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. MR**557543**

*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hoffmann, eds.), Birkhäuser, Basel, 1983.

*Generalized Inverses and Applications*, Academic Press, New York, 1976. E. Schock, "Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence," in

*Improperly Posed Problems and Their Numerical Treatment*(G. Hämmerlin and K. H. Hofmann, eds.), Birkhäuser, Basel, 1983.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp.
**49**(1987), 507-522 - MSC: Primary 65J10; Secondary 47A50
- DOI: https://doi.org/10.1090/S0025-5718-1987-0906185-4
- MathSciNet review: 906185