Two-step methods and bi-orthogonality
HTML articles powered by AMS MathViewer
- by A. Iserles and S. P. Nørsett PDF
- Math. Comp. 49 (1987), 543-552 Request permission
Abstract:
We study order and zero-stability of two-step methods of Obrechkoff type for ordinary differential equations. A relation between order and properties of mth degree polynomials orthogonal to ${x^{{\mu _i}}}$, $1 \leqslant i \leqslant m$, where $- 1 < {\mu _1} < {\mu _2} < \cdots < {\mu _m}$, is established. These polynomials are investigated, focusing on their explicit form, Rodrigues-type formulae and loci of their zeros.References
- A. Iserles, Two-step numerical methods for parabolic differential equations, BIT 21 (1981), no. 1, 80–96. MR 616702, DOI 10.1007/BF01934073
- C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (eds.), Polynômes orthogonaux et applications, Lecture Notes in Mathematics, vol. 1171, Springer-Verlag, Berlin, 1985. MR 838964, DOI 10.1007/BFb0076527 A. Iserles & S. P. Nørsett, On the Theory of Bi-Orthogonal Polynomials, Tech. Rep. NA1, DAMTP, University of Cambridge, 1986.
- Syvert P. Nørsett, One-step methods of Hermite type for numerical integration of stiff systems, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 63–77. MR 337014, DOI 10.1007/bf01933119
- Syvert P. Nørsett, Splines and collocation for ordinary initial value problems, Approximation theory and spline functions (St. John’s, Nfld., 1983) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 136, Reidel, Dordrecht, 1984, pp. 397–417. MR 786857
- R. E. Shafer, On quadratic approximation, SIAM J. Numer. Anal. 11 (1974), 447–460. MR 358161, DOI 10.1137/0711037
- G. Wanner, E. Hairer, and S. P. Nørsett, Order stars and stability theorems, BIT 18 (1978), no. 4, 475–489. MR 520756, DOI 10.1007/BF01932026
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 49 (1987), 543-552
- MSC: Primary 65L05; Secondary 33A65
- DOI: https://doi.org/10.1090/S0025-5718-1987-0906187-8
- MathSciNet review: 906187