$P$-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems
HTML articles powered by AMS MathViewer
- by U. Anantha Krishnaiah PDF
- Math. Comp. 49 (1987), 553-559 Request permission
Abstract:
In this paper P-stable methods of $O({h^6})$ and $O({h^8})$ with minimal phase-lag (frequency distortion) are derived. Numerical results for both linear and nonlinear problems are presented.References
- U. Anantha Krishnaiah, A class of two-step P-stable methods for the accurate integration of second order periodic initial value problems, J. Comput. Appl. Math. 14 (1986), no. 3, 455–459. MR 831087, DOI 10.1016/0377-0427(86)90080-4 L. Brusa & L. Nigro, "A one-step method for direct integration of structural dynamic equations," Internat. J. Numer. Methods Engrg., v. 15, 1980, pp. 685-699.
- J. R. Cash, High order $P$-stable formulae for the numerical integration of periodic initial value problems, Numer. Math. 37 (1981), no. 3, 355–370. MR 627110, DOI 10.1007/BF01400315
- M. M. Chawla, Two-step fourth order $P$-stable methods for second order differential equations, BIT 21 (1981), no. 2, 190–193. MR 627879, DOI 10.1007/BF01933163
- M. M. Chawla and P. S. Rao, A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, J. Comput. Appl. Math. 11 (1984), no. 3, 277–281. MR 777103, DOI 10.1016/0377-0427(84)90002-5
- Germund Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT 18 (1978), no. 2, 133–136. MR 499228, DOI 10.1007/BF01931689
- Walter Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381–397. MR 138200, DOI 10.1007/BF01386037
- I. Gladwell and R. M. Thomas, Damping and phase analysis for some methods for solving second-order ordinary differential equations, Internat. J. Numer. Methods Engrg. 19 (1983), no. 4, 495–503. MR 702055, DOI 10.1002/nme.1620190404
- E. Hairer, Unconditionally stable methods for second order differential equations, Numer. Math. 32 (1979), no. 4, 373–379. MR 542200, DOI 10.1007/BF01401041
- M. K. Jain, R. K. Jain, and U. Anantha Krishnaiah, $P$-stable methods for periodic initial value problems of second order differential equations, BIT 19 (1979), no. 3, 347–355. MR 548614, DOI 10.1007/BF01930988
- J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976), no. 2, 189–202. MR 431691, DOI 10.1093/imamat/18.2.189
- E. Stiefel and D. G. Bettis, Stabilization of Cowell’s method, Numer. Math. 13 (1969), 154–175. MR 263250, DOI 10.1007/BF02163234
- R. M. Thomas, Phase properties of high order, almost $P$-stable formulae, BIT 24 (1984), no. 2, 225–238. MR 753550, DOI 10.1007/BF01937488 R. van Dooren, "Stabilization of Cowell’s classical finite difference method for numerical integration," J. Comput. Phys., v. 16, 1974, pp. 186-192.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 49 (1987), 553-559
- MSC: Primary 65L05
- DOI: https://doi.org/10.1090/S0025-5718-1987-0906188-X
- MathSciNet review: 906188