Calculation of the class numbers of imaginary cyclic quartic fields
HTML articles powered by AMS MathViewer
- by Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams and N. M. Holtz PDF
- Math. Comp. 49 (1987), 615-620 Request permission
Abstract:
Any imaginary cyclic quartic field can be expressed uniquely in the form $K = Q(\sqrt {A(D + B\sqrt D )} )$, where A is squarefree, odd and negative, $D = {B^2} + {C^2}$ is squarefree, $B > 0,C > 0$, and $(A,D) = 1$. Explicit formulae for the discriminant and conductor of K are given in terms of A, B, C, D. The calculation of tables of the class numbers $h(K)$ of such fields K is described.References
- Ethan D. Bolker, Elementary number theory. An algebraic approach, W. A. Benjamin, Inc., New York, 1970. MR 0252310
- Harvey Cohn, A computation of some bi-quadratic class numbers, Math. Tables Aids Comput. 12 (1958), 213–217. MR 100972, DOI 10.1090/S0025-5718-1958-0100972-2 M.-N. Gras, Table Numérique du Nombre de Classes et des Unités des Extensions Cycliques Réelles de Degré 4 de Q, Publ. Math. Univ. Besançon, 1977/78, fasc. 2, 53 pp.
- Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams, and N. M. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, Math. Comp. 49 (1987), no. 180, 615–620. MR 906194, DOI 10.1090/S0025-5718-1987-0906194-5 R. H. Hudson & K. S. Williams, A Class Number Formula for Certain Quartic Fields, Carleton Mathematical Series No. 174, February 1981, 25 pp. B. Oriat, Groupe des Classes des Corps Quadratiques Réels $Q(\sqrt d ),d < 10000$, Faculté des Sciences de Besançon, Besançon, France, 53 pp.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 49 (1987), 615-620
- MSC: Primary 11Y40; Secondary 11R16, 11R29
- DOI: https://doi.org/10.1090/S0025-5718-1987-0906194-5
- MathSciNet review: 906194