High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws
HTML articles powered by AMS MathViewer
- by J.-P. Vila PDF
- Math. Comp. 50 (1988), 53-73 Request permission
Abstract:
A systematic procedure for constructing explicit, quasi second-order approximations to strictly hyperbolic systems of conservation laws is presented. These new schemes are obtained by correcting first-order schemes. We prove that limit solutions satisfy the entropy inequality. In the scalar case, we prove convergence to the unique entropy-satisfying solution if the initial scheme is Total Variation Decreasing (i.e., TVD) and consistent with the entropy condition. Finally, we slightly modify Harten’s high-order schemes such that they obey the previous conditions and thus converge towards the "entropy" solution.References
-
D. L. Book, J. P. Boris & K. Hain, "Flux corrected transport. II," J. Comput. Phys., v. 18, 1975, pp. 248-283.
- Ronald J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1979), no. 1, 137–188. MR 523630, DOI 10.1512/iumj.1979.28.28011
- Ami Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), no. 3, 357–393. MR 701178, DOI 10.1016/0021-9991(83)90136-5
- Amiram Harten and Peter D. Lax, A random choice finite difference scheme for hyperbolic conservation laws, SIAM J. Numer. Anal. 18 (1981), no. 2, 289–315. MR 612144, DOI 10.1137/0718021 A. Harten, P. D. Lax & B. Van-Leer, Upstream Differencing and Godunov Type Schemes for Hyperbolic Conservation Laws, ICASE, 82-5.
- A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR 413526, DOI 10.1002/cpa.3160290305
- Peter Lax, Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 603–634. MR 0393870
- A. Y. le Roux, Numerical stability for some equations of gas dynamics, Math. Comp. 37 (1981), no. 156, 307–320. MR 628697, DOI 10.1090/S0025-5718-1981-0628697-8
- A. Y. LeRoux and P. Quesseveur, Convergence of an antidiffusion Lagrange-Euler scheme for quasilinear equations, SIAM J. Numer. Anal. 21 (1984), no. 5, 985–994. MR 760627, DOI 10.1137/0721061
- Andrew Majda and Stanley Osher, A systematic approach for correcting nonlinear instabilities. The Lax-Wendroff scheme for scalar conservation laws, Numer. Math. 30 (1978), no. 4, 429–452. MR 502526, DOI 10.1007/BF01398510 S. Osher & S. Chakravarthy, High Resolution Schemes and the Entropy Condition, ICASE 83-49. E. Tadmor, Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, ICASE 83-20.
- Eitan Tadmor, The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme, Math. Comp. 43 (1984), no. 168, 353–368. MR 758188, DOI 10.1090/S0025-5718-1984-0758188-8
- J.-P. Vila, Simplified Godunov schemes for $2\times 2$ systems of conservation laws, SIAM J. Numer. Anal. 23 (1986), no. 6, 1173–1192. MR 865949, DOI 10.1137/0723079
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 53-73
- MSC: Primary 65M10; Secondary 35L65
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917818-1
- MathSciNet review: 917818