Upper semicontinuity of attractors for approximations of semigroups and partial differential equations
HTML articles powered by AMS MathViewer
- by Jack K. Hale, Xiao-Biao Lin and Geneviève Raugel PDF
- Math. Comp. 50 (1988), 89-123 Request permission
Abstract:
Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite-dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.References
- A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl. (9) 62 (1983), no. 4, 441–491 (1984). MR 735932
- J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082–1088. MR 284682, DOI 10.1090/S0002-9904-1971-12879-3
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- Philip Brenner, Michel Crouzeix, and Vidar Thomée, Single-step methods for inhomogeneous linear differential equations in Banach space, RAIRO Anal. Numér. 16 (1982), no. 1, 5–26 (English, with French summary). MR 648742
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- P. Constantin, C. Foias, and R. Temam, On the large time Galerkin approximation of the Navier-Stokes equations, SIAM J. Numer. Anal. 21 (1984), no. 4, 615–634. MR 749361, DOI 10.1137/0721043 G. Cooperman, $\alpha$-Condensing Maps and Dissipative Systems, Ph.D. Thesis, Brown University, Providence, RI, June 1978.
- Michel Crouzeix and Vidar Thomée, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 359–377. MR 906176, DOI 10.1090/S0025-5718-1987-0906176-3
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- Hiroshi Fujita and Akira Mizutani, On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups, J. Math. Soc. Japan 28 (1976), no. 4, 749–771. MR 428733, DOI 10.2969/jmsj/02840749
- Jack K. Hale, Some recent results on dissipative processes, Functional differential equations and bifurcation (Proc. Conf., Inst. Ciênc. Mat. São Carlos, Univ. São Paulo, São Carlos, 1979) Lecture Notes in Math., vol. 799, Springer, Berlin, 1980, pp. 152–172. MR 585487
- J. K. Hale, Asymptotic behaviour and dynamics in infinite dimensions, Nonlinear differential equations (Granada, 1984) Res. Notes in Math., vol. 132, Pitman, Boston, MA, 1985, pp. 1–42. MR 908897
- J. K. Hale, J. P. LaSalle, and Marshall Slemrod, Theory of a general class of dissipative processes, J. Math. Anal. Appl. 39 (1972), 177–191. MR 314029, DOI 10.1016/0022-247X(72)90233-8
- Jack K. Hale and Orlando Lopes, Fixed point theorems and dissipative processes, J. Differential Equations 13 (1973), 391–402. MR 333851, DOI 10.1016/0022-0396(73)90025-9 J. K. Hale, X. B. Lin & G. Raugel, Upper Semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations, LCDS report #85-29, Brown University, Providence, RI, October 1985.
- Hans-Peter Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta Math. 13 (1974), 219–235 (German, with English summary). MR 356513, DOI 10.1007/BF01168227
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750–777. MR 849281, DOI 10.1137/0723049
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization, SIAM J. Numer. Anal. 25 (1988), no. 3, 489–512. MR 942204, DOI 10.1137/0725032
- Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 331–357. MR 906175, DOI 10.1090/S0025-5718-1987-0906175-1
- Tosio Kato, Fractional powers of dissipative operators. II, J. Math. Soc. Japan 14 (1962), 242–248. MR 151868, DOI 10.2969/jmsj/01420242 S. N. S. Khalsa, "Finite element approximation of a reaction diffusion equation. Part I: Application of a topological technique to the analysis of asymptotic behavior of the semidiscrete approximation." (Preprint.)
- O. A. Ladyženskaja, The dynamical system that is generated by the Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 91–115 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 6. MR 0328378 O. A. Ladyzhenskaya, "Dynamical system generated by the Navier-Stokes equations," Soviet Phys. Dokl., v. 17, 1973, pp. 647-649. X. B. Lin & G. Raugel, "Approximation of attractors of Morse-Smale systems given by parabolic equations." (In preparation.)
- J.-L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14 (1962), 233–241 (French). MR 152878, DOI 10.2969/jmsj/01420233
- Paul Massatt, Attractivity properties of $\alpha$-contractions, J. Differential Equations 48 (1983), no. 3, 326–333. MR 702423, DOI 10.1016/0022-0396(83)90097-9 X. Mora, "Comparing the phase portrait of a nonlinear parabolic equation with that of its Galerkin approximations." (Preprint). G. Raugel, "Hilbert space estimates in the approximation of inhomogeneous parabolic problems by single step methods," submitted to Math. Comp.
- P. Rutkowski, Approximate solutions of eigenvalue problems with reproducing nonlinearities, Z. Angew. Math. Phys. 34 (1983), no. 3, 310–321 (English, with German summary). MR 712275, DOI 10.1007/BF00944852
- K. Schmitt, R. C. Thompson, and W. Walter, Existence of solutions of a nonlinear boundary value problem via the method of lines, Nonlinear Anal. 2 (1978), no. 5, 519–535. MR 512149, DOI 10.1016/0362-546X(78)90001-9
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- Vidar Thomée and Lars Wahlbin, On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378–389. MR 395269, DOI 10.1137/0712030
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 89-123
- MSC: Primary 47H20; Secondary 35K55, 35K70, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917820-X
- MathSciNet review: 917820