## Upper semicontinuity of attractors for approximations of semigroups and partial differential equations

HTML articles powered by AMS MathViewer

- by Jack K. Hale, Xiao-Biao Lin and Geneviève Raugel PDF
- Math. Comp.
**50**(1988), 89-123 Request permission

## Abstract:

Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite-dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.## References

- A. V. Babin and M. I. Vishik,
*Regular attractors of semigroups and evolution equations*, J. Math. Pures Appl. (9)**62**(1983), no. 4, 441–491 (1984). MR**735932** - J. E. Billotti and J. P. LaSalle,
*Dissipative periodic processes*, Bull. Amer. Math. Soc.**77**(1971), 1082–1088. MR**284682**, DOI 10.1090/S0002-9904-1971-12879-3 - J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,
*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**448926**, DOI 10.1137/0714015 - Philip Brenner, Michel Crouzeix, and Vidar Thomée,
*Single-step methods for inhomogeneous linear differential equations in Banach space*, RAIRO Anal. Numér.**16**(1982), no. 1, 5–26 (English, with French summary). MR**648742** - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - P. Constantin, C. Foias, and R. Temam,
*On the large time Galerkin approximation of the Navier-Stokes equations*, SIAM J. Numer. Anal.**21**(1984), no. 4, 615–634. MR**749361**, DOI 10.1137/0721043
G. Cooperman, $\alpha$- - Michel Crouzeix and Vidar Thomée,
*On the discretization in time of semilinear parabolic equations with nonsmooth initial data*, Math. Comp.**49**(1987), no. 180, 359–377. MR**906176**, DOI 10.1090/S0025-5718-1987-0906176-3 - M. Crouzeix and V. Thomée,
*The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces*, Math. Comp.**48**(1987), no. 178, 521–532. MR**878688**, DOI 10.1090/S0025-5718-1987-0878688-2 - Hiroshi Fujita and Akira Mizutani,
*On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups*, J. Math. Soc. Japan**28**(1976), no. 4, 749–771. MR**428733**, DOI 10.2969/jmsj/02840749 - Jack K. Hale,
*Some recent results on dissipative processes*, Functional differential equations and bifurcation (Proc. Conf., Inst. Ciênc. Mat. São Carlos, Univ. São Paulo, São Carlos, 1979) Lecture Notes in Math., vol. 799, Springer, Berlin, 1980, pp. 152–172. MR**585487** - J. K. Hale,
*Asymptotic behaviour and dynamics in infinite dimensions*, Nonlinear differential equations (Granada, 1984) Res. Notes in Math., vol. 132, Pitman, Boston, MA, 1985, pp. 1–42. MR**908897** - J. K. Hale, J. P. LaSalle, and Marshall Slemrod,
*Theory of a general class of dissipative processes*, J. Math. Anal. Appl.**39**(1972), 177–191. MR**314029**, DOI 10.1016/0022-247X(72)90233-8 - Jack K. Hale and Orlando Lopes,
*Fixed point theorems and dissipative processes*, J. Differential Equations**13**(1973), 391–402. MR**333851**, DOI 10.1016/0022-0396(73)90025-9
J. K. Hale, X. B. Lin & G. Raugel, - Hans-Peter Helfrich,
*Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen*, Manuscripta Math.**13**(1974), 219–235 (German, with English summary). MR**356513**, DOI 10.1007/BF01168227 - Daniel Henry,
*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244** - John G. Heywood and Rolf Rannacher,
*Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time*, SIAM J. Numer. Anal.**23**(1986), no. 4, 750–777. MR**849281**, DOI 10.1137/0723049 - John G. Heywood and Rolf Rannacher,
*Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization*, SIAM J. Numer. Anal.**25**(1988), no. 3, 489–512. MR**942204**, DOI 10.1137/0725032 - Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin,
*Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data*, Math. Comp.**49**(1987), no. 180, 331–357. MR**906175**, DOI 10.1090/S0025-5718-1987-0906175-1 - Tosio Kato,
*Fractional powers of dissipative operators. II*, J. Math. Soc. Japan**14**(1962), 242–248. MR**151868**, DOI 10.2969/jmsj/01420242
S. N. S. Khalsa, "Finite element approximation of a reaction diffusion equation. Part I: Application of a topological technique to the analysis of asymptotic behavior of the semidiscrete approximation." (Preprint.)
- O. A. Ladyženskaja,
*The dynamical system that is generated by the Navier-Stokes equations*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**27**(1972), 91–115 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 6. MR**0328378**
O. A. Ladyzhenskaya, "Dynamical system generated by the Navier-Stokes equations," - J.-L. Lions,
*Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs*, J. Math. Soc. Japan**14**(1962), 233–241 (French). MR**152878**, DOI 10.2969/jmsj/01420233 - Paul Massatt,
*Attractivity properties of $\alpha$-contractions*, J. Differential Equations**48**(1983), no. 3, 326–333. MR**702423**, DOI 10.1016/0022-0396(83)90097-9
X. Mora, "Comparing the phase portrait of a nonlinear parabolic equation with that of its Galerkin approximations." (Preprint).
G. Raugel, "Hilbert space estimates in the approximation of inhomogeneous parabolic problems by single step methods," submitted to - P. Rutkowski,
*Approximate solutions of eigenvalue problems with reproducing nonlinearities*, Z. Angew. Math. Phys.**34**(1983), no. 3, 310–321 (English, with German summary). MR**712275**, DOI 10.1007/BF00944852 - K. Schmitt, R. C. Thompson, and W. Walter,
*Existence of solutions of a nonlinear boundary value problem via the method of lines*, Nonlinear Anal.**2**(1978), no. 5, 519–535. MR**512149**, DOI 10.1016/0362-546X(78)90001-9 - Roger Temam,
*Navier-Stokes equations and nonlinear functional analysis*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR**764933** - Vidar Thomée,
*Galerkin finite element methods for parabolic problems*, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR**744045** - Vidar Thomée and Lars Wahlbin,
*On Galerkin methods in semilinear parabolic problems*, SIAM J. Numer. Anal.**12**(1975), 378–389. MR**395269**, DOI 10.1137/0712030

*Condensing Maps and Dissipative Systems*, Ph.D. Thesis, Brown University, Providence, RI, June 1978.

*Upper Semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations*, LCDS report #85-29, Brown University, Providence, RI, October 1985.

*Soviet Phys. Dokl.*, v. 17, 1973, pp. 647-649. X. B. Lin & G. Raugel, "Approximation of attractors of Morse-Smale systems given by parabolic equations." (In preparation.)

*Math. Comp.*

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp.
**50**(1988), 89-123 - MSC: Primary 47H20; Secondary 35K55, 35K70, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917820-X
- MathSciNet review: 917820