Asymptotic expansions of multiple integrals of rapidly oscillating functions
HTML articles powered by AMS MathViewer
- by T. Iwaniec and A. Lutoborski PDF
- Math. Comp. 50 (1988), 215-228 Request permission
Abstract:
Expansions of multiple integrals \[ \int _{{a_1}}^{{b_1}} \cdots \int _{{a_n}}^{{b_n}} {w({\sigma _1}{x_1}, \ldots ,{\sigma _n}{x_n})g({x_1}, \ldots ,{x_n})\;d{x_1} \cdots d{x_n},} \] where w is a function on ${{\mathbf {R}}^n}$ which is $({b_k} - {a_k})$-periodic in the kth variable, $k = 1, \ldots ,n$, and g is smooth, are given in terms of negative powers of the integers ${\sigma _1}, \ldots ,{\sigma _n}$. Estimates of the remainder term in the expansion are also given.References
-
M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
- U. Banerjee, L. J. Lardy, and A. Lutoborski, Asymptotic expansions of integrals of certain rapidly oscillating functions, Math. Comp. 49 (1987), no. 179, 243–249. MR 890265, DOI 10.1090/S0025-5718-1987-0890265-6
- Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- J. N. Lyness, The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. I. Functions whose early derivatives are continuous, Math. Comp. 24 (1970), 101–135. MR 260230, DOI 10.1090/S0025-5718-1970-0260230-8
- Hans J. Stetter, Numerical approximation of Fourier-transforms, Numer. Math. 8 (1966), 235–249. MR 198716, DOI 10.1007/BF02162560
- Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 463908, DOI 10.1007/BF02418013
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 215-228
- MSC: Primary 41A60
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917829-6
- MathSciNet review: 917829