Asymptotic expansion of $\int ^ {\pi /2}_ 0J^ 2_ \nu (\lambda \textrm {cos} \theta ) d\theta$
HTML articles powered by AMS MathViewer
- by R. Wong PDF
- Math. Comp. 50 (1988), 229-234 Request permission
Abstract:
An asymptotic expansion is obtained, as $\lambda \to + \infty$, for the integral \[ I(\lambda ) = \int _0^{\pi /2} {J_v^2(\lambda \cos \theta )\;d\theta ,} \] where ${J_v}(t)$ is the Bessel function of the first kind and $v > - \tfrac {1}{2}$. This integral arises in studies of crystallography and diffraction theory. We show in particular that $I(\lambda ) \sim \ln \lambda /\lambda \pi$.References
-
N. Bleistein & R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975.
- B. C. Carlson and John L. Gustafson, Asymptotic expansion of the first elliptic integral, SIAM J. Math. Anal. 16 (1985), no. 5, 1072–1092. MR 800798, DOI 10.1137/0516080
- O. I. Marichev, Handbook of integral transforms of higher transcendental functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; John Wiley & Sons, Inc., New York, 1983. Theory and algorithmic tables; Edited by F. D. Gakhov; Translated from the Russian by L. W. Longdon. MR 689711
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- Basil J. Stoyanov and Richard A. Farrell, On the asymptotic evaluation of $\int ^{\pi /2}_0J^2_0(\lambda \,\textrm {sin}\,x)dx$, Math. Comp. 49 (1987), no. 179, 275–279. MR 890269, DOI 10.1090/S0025-5718-1987-0890269-3
- R. Wong, Explicit error terms for asymptotic expansions of Mellin convolutions, J. Math. Anal. Appl. 72 (1979), no. 2, 740–756. MR 559402, DOI 10.1016/0022-247X(79)90261-0
- R. Wong, Error bounds for asymptotic expansions of integrals, SIAM Rev. 22 (1980), no. 4, 401–435. MR 593856, DOI 10.1137/1022086
- R. Wong, Applications of some recent results in asymptotic expansions, Congr. Numer. 37 (1983), 145–182. MR 703584
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 229-234
- MSC: Primary 41A60; Secondary 33A40
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917830-2
- MathSciNet review: 917830