Tables of Fibonacci and Lucas factorizations
Authors:
John Brillhart, Peter L. Montgomery and Robert D. Silverman
Journal:
Math. Comp. 50 (1988), 251260
MSC:
Primary 1104; Secondary 11B39
DOI:
https://doi.org/10.1090/S00255718198809178326
MathSciNet review:
917832
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: We list the known prime factors of the Fibonacci numbers ${F_n}$ for $n \leq 999$ and Lucas numbers ${L_n}$ for $n \leq 500$. We discuss the various methods used to obtain these factorizations, and primality tests, and give some history of the subject.

J. Brillhart, "Fibonacci century mark reached," Fibonacci Quart., v. 1, 1963, p. 45.
J. Brillhart, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447450.
 John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of $2^{m}\pm 1$, Math. Comp. 29 (1975), 620โ647. MR 384673, DOI https://doi.org/10.1090/S00255718197503846731 J. Brillhart, "UMT of ${F_n}$ for $n \leq 3500$ and ${L_n}$ for $n \leq 1750$," Math. Comp., submitted to unpublished tables.
 John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^{n}\pm 1$, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. $b=2,\,3,\,5,\,6,\,7,\,10,\,11,\,12$ up to high powers. MR 715603
 H. Cohen and H. W. Lenstra Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), no. 165, 297โ330. MR 726006, DOI https://doi.org/10.1090/S0025571819840726006X J. A. Davis & D. B. Holdridge, Most Wanted Factorizations Using the Quadratic Sieve, Sandia Report SAND841658, 1984.
 Joseph L. Gerver, Factoring large numbers with a quadratic sieve, Math. Comp. 41 (1983), no. 163, 287โ294. MR 701639, DOI https://doi.org/10.1090/S00255718198307016394 D. Jarden, Recurring Sequences, 3rd ed., Riveon Lematematika, Jerusalem, 1973. D. H. Lehmer, "An announcement concerning the Delay Line Sieve DLS 127," Math. Comp., v. 20, 1966, pp. 645646. H. W. Lenstra, Jr., "Factoring integers with elliptic curves," Ann. of Math. (To appear.)
 Peter L. Montgomery, Modular multiplication without trial division, Math. Comp. 44 (1985), no. 170, 519โ521. MR 777282, DOI https://doi.org/10.1090/S0025571819850777282X
 Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), no. 177, 243โ264. MR 866113, DOI https://doi.org/10.1090/S00255718198708661137
 Michael A. Morrison and John Brillhart, A method of factoring and the factorization of $F_{7}$, Math. Comp. 29 (1975), 183โ205. MR 371800, DOI https://doi.org/10.1090/S00255718197503718005 T. Naur, Integer Factorization, DAIMI PB144, Computer Science Department, Aarhus University, Denmark, 1982.
 Thorkil Naur, New integer factorizations, Math. Comp. 41 (1983), no. 164, 687โ695. MR 717713, DOI https://doi.org/10.1090/S00255718198307177132
 Robert D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), no. 177, 329โ339. MR 866119, DOI https://doi.org/10.1090/S00255718198708661198 Robert D. Silverman, "Parallel implementation of the quadratic sieve," The Journal of Supercomputing, v. 1, 1987, no. 3.
 H. C. Williams, A $p+1$ method of factoring, Math. Comp. 39 (1982), no. 159, 225โ234. MR 658227, DOI https://doi.org/10.1090/S00255718198206582277
 H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comp. 30 (1976), no. 136, 867โ886. MR 414473, DOI https://doi.org/10.1090/S00255718197604144736 H. C. Williams, private communication.
Retrieve articles in Mathematics of Computation with MSC: 1104, 11B39
Retrieve articles in all journals with MSC: 1104, 11B39
Additional Information
Keywords:
Factor tables,
Fibonacci,
Lucas,
factorizations
Article copyright:
© Copyright 1988
American Mathematical Society