The twentieth Fermat number is composite
HTML articles powered by AMS MathViewer
- by Jeff Young and Duncan A. Buell PDF
- Math. Comp. 50 (1988), 261-263 Request permission
Abstract:
The twentieth Fermat number, ${F_{20}} = {2^{{2^{20}}}} + 1$, has been proven composite by machine computation.References
- Wilfrid Keller, Factors of Fermat numbers and large primes of the form $k\cdot 2^{n}+1$, Math. Comp. 41 (1983), no. 164, 661–673. MR 717710, DOI 10.1090/S0025-5718-1983-0717710-7
- J. C. Morehead, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 11 (1905), no. 10, 543–545. MR 1558255, DOI 10.1090/S0002-9904-1905-01255-6
- J. C. Morehead and A. E. Western, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 16 (1909), no. 1, 1–6. MR 1558828, DOI 10.1090/S0002-9904-1909-01841-5
- G. A. Paxson, The compositeness of the thirteenth Fermat number, Math. Comp. 15 (1961), 420. MR 124264, DOI 10.1090/S0025-5718-1961-0124264-0 P. Pépin, "Sur la formule ${2^{2^n} + 1}$," C. R. Acad. Sci. Paris, v. 85, 1877, pp. 329-331.
- Raphael M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842–846. MR 64787, DOI 10.1090/S0002-9939-1954-0064787-4
- J. L. Selfridge and Alexander Hurwitz, Fermat numbers and Mersenne numbers, Math. Comp. 18 (1964), 146–148. MR 159775, DOI 10.1090/S0025-5718-1964-0159775-8
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 261-263
- MSC: Primary 11A51; Secondary 11Y05, 11Y11
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917833-8
- MathSciNet review: 917833