The sum of like powers of the zeros of the Riemann zeta function
HTML articles powered by AMS MathViewer
 by D. H. Lehmer PDF
 Math. Comp. 50 (1988), 265273 Request permission
Abstract:
In this paper we discuss a method of evaluating the sum ${\sigma _r} = \sum {{\rho ^{  r}}}$ where r is an integer greater than 1 and the sum is taken over all the complex zeros of $\zeta (s)$, the Riemann zeta function. The method requires the coefficients of the Maclaurin expansion of the entire function $f(s) = (s  1)\zeta (s)$. These are obtained from a limit theorem of Sitaramachandrarao by the use of the EulerMaclaurin summation formula. The sum ${\sigma _r}$ is then obtained from the logarithmic derivative of the function $f(s)$. A table of ${\sigma _r}$ is given to 30 decimals for $r = 2(1)26$.References

B. Baillaud & H. Bourget, Correspondance d’Hermite et de Stieltjes, Tome 1, GauthierVillars, Paris, 1905.
 W. E. Briggs and S. Chowla, The power series coefficients of $\zeta (s)$, Amer. Math. Monthly 62 (1955), 323–325. MR 69209, DOI 10.2307/2307036
 J. J. Y. Liang and John Todd, The Stieltjes constants, J. Res. Nat. Bur. Standards Sect. B 76B (1972), 161–178. MR 326974 J. L. W. V. Jensen, "Sur la fonction $\zeta (s)$ de Riemann," Comptes Rendus, v. 104, 1887, pp. 11561159. J. P. Gram, "Note sur le calcul de la fonction $\zeta (s)$ de Riemann," K. Danske Vidensk. Selskab Forhandlingar, 1895, pp. 305308.
 Bruce C. Berndt, Chapter 8 of Ramanujan’s second notebook, J. Reine Angew. Math. 338 (1983), 1–55. MR 684013, DOI 10.1515/crll.1983.338.1
 Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp. 44 (1985), no. 169, 223–232. MR 771044, DOI 10.1090/S00255718198507710445 R. Sitaramachandrarao, "Maclaurin coefficients of the Riemann zeta function," Abstracts Amer. Moth. Soc., v. 7, 1986, p. 280. M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions, Nat. Bur. Standards, Washington, D.C., 1964.
 R. Lienard, Tables Fondamentales à 50 Décimales des Sommes $S_n$, $u_n$, $\Sigma _n$, Centre de Documentation Universitaire, Paris, 1948 (French). MR 0026404
Additional Information
 © Copyright 1988 American Mathematical Society
 Journal: Math. Comp. 50 (1988), 265273
 MSC: Primary 11M26; Secondary 11Y35
 DOI: https://doi.org/10.1090/S0025571819880917834X
 MathSciNet review: 917834