The sum of like powers of the zeros of the Riemann zeta function
HTML articles powered by AMS MathViewer
- by D. H. Lehmer PDF
- Math. Comp. 50 (1988), 265-273 Request permission
Abstract:
In this paper we discuss a method of evaluating the sum ${\sigma _r} = \sum {{\rho ^{ - r}}}$ where r is an integer greater than 1 and the sum is taken over all the complex zeros of $\zeta (s)$, the Riemann zeta function. The method requires the coefficients of the Maclaurin expansion of the entire function $f(s) = (s - 1)\zeta (s)$. These are obtained from a limit theorem of Sitaramachandrarao by the use of the Euler-Maclaurin summation formula. The sum ${\sigma _r}$ is then obtained from the logarithmic derivative of the function $f(s)$. A table of ${\sigma _r}$ is given to 30 decimals for $r = 2(1)26$.References
-
B. Baillaud & H. Bourget, Correspondance d’Hermite et de Stieltjes, Tome 1, Gauthier-Villars, Paris, 1905.
- W. E. Briggs and S. Chowla, The power series coefficients of $\zeta (s)$, Amer. Math. Monthly 62 (1955), 323–325. MR 69209, DOI 10.2307/2307036
- J. J. Y. Liang and John Todd, The Stieltjes constants, J. Res. Nat. Bur. Standards Sect. B 76B (1972), 161–178. MR 326974 J. L. W. V. Jensen, "Sur la fonction $\zeta (s)$ de Riemann," Comptes Rendus, v. 104, 1887, pp. 1156-1159. J. P. Gram, "Note sur le calcul de la fonction $\zeta (s)$ de Riemann," K. Danske Vidensk. Selskab Forhandlingar, 1895, pp. 305-308.
- Bruce C. Berndt, Chapter 8 of Ramanujan’s second notebook, J. Reine Angew. Math. 338 (1983), 1–55. MR 684013, DOI 10.1515/crll.1983.338.1
- Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp. 44 (1985), no. 169, 223–232. MR 771044, DOI 10.1090/S0025-5718-1985-0771044-5 R. Sitaramachandrarao, "Maclaurin coefficients of the Riemann zeta function," Abstracts Amer. Moth. Soc., v. 7, 1986, p. 280. M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions, Nat. Bur. Standards, Washington, D.C., 1964.
- R. Lienard, Tables Fondamentales à 50 Décimales des Sommes $S_n$, $u_n$, $\Sigma _n$, Centre de Documentation Universitaire, Paris, 1948 (French). MR 0026404
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 265-273
- MSC: Primary 11M26; Secondary 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917834-X
- MathSciNet review: 917834