On the $3$-Sylow subgroup of the class group of quadratic fields
HTML articles powered by AMS MathViewer
- by Pascual Llorente and Jordi Quer PDF
- Math. Comp. 50 (1988), 321-333 Request permission
Abstract:
In this paper we give a large number of quadratic fields ${\mathbf {Q}}(\sqrt d )$ whose class group $H(d)$ has 3-Sylow subgroup ${H_3}(d)$ with rank ${r_3}(d) > 1$. They include 20 discriminants $d < 0$ with ${r_3}(d) = 5$. The associate real fields have ${r_3}(d’ ) = 4$. The distribution of the ${H_3}(d)$ is studied and its relative frequency is compared with the heuristic conjectures of Cohen and Lenstra. Some of the $H(d)$ are recorded since they are of special interest. Some related topics are also considered.References
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Maurice Craig, A construction for irregular discriminants, Osaka Math. J. 14 (1977), no. 2, 365–402. MR 450226
- F. Diaz y Diaz, On some families of imaginary quadratic fields, Math. Comp. 32 (1978), no. 142, 637–650. MR 485775, DOI 10.1090/S0025-5718-1978-0485775-4
- F. Diaz y Diaz, Daniel Shanks, and H. C. Williams, Quadratic fields with $3$-rank equal to $4$, Math. Comp. 33 (1979), no. 146, 836–840. MR 521299, DOI 10.1090/S0025-5718-1979-0521299-4
- Jean-François Mestre, Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23–35 (French). MR 705875, DOI 10.1515/crll.1983.343.23
- Carol Neild and Daniel Shanks, On the $3$-rank of quadratic fields and the Euler product, Math. Comp. 28 (1974), 279–291. MR 352042, DOI 10.1090/S0025-5718-1974-0352042-5 J. Quer, Construcció de Cossos Quadràtics amb Grup de Classes d’Ideals de p-Rang Elevat, Tesina, Universitat Autònoma de Barcelona, 1985 (unpublished).
- René Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209–220. MR 863524, DOI 10.1515/crll.1986.372.209 A. Scholz, "Über die Beziehung der Klassenzahlen quadratischer Körper zueinander," J. Reine Angew. Math., v. 166, 1932, pp. 201-203.
- Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- Daniel Shanks, New types of quadratic fields having three invariants divisible by $3$, J. Number Theory 4 (1972), 537–556. MR 313220, DOI 10.1016/0022-314X(72)90027-3
- Daniel Shanks and Richard Serafin, Quadratic fields with four invariants divisible by $3$, Math. Comp. 27 (1973), 183–187. MR 330097, DOI 10.1090/S0025-5718-1973-0330097-0
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 321-333
- MSC: Primary 11R11; Secondary 11R29
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917838-7
- MathSciNet review: 917838