Weak uniform distribution for divisor functions. I
HTML articles powered by AMS MathViewer
- by Francis J. Rayner PDF
- Math. Comp. 50 (1988), 335-342 Request permission
Abstract:
Narkiewicz (reference [3, pp. 204-205]) has proposed an algorithm for determining the moduli with respect to which a given arithmetic function (of suitable type) has weak uniform distribution. The class of functions to which this algorithm applies includes the divisor functions ${\sigma _i}$. The present paper gives an improvement to the algorithm for odd values of i, which makes computation feasible for values of i up to 200. The results of calculations for odd values of i in the range $1 \leq i \leq 199$ are reported.References
- O. M. Fomenko, The distribution of values of multiplicative functions modulo a prime number, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 93 (1980), 218–224, 229 (Russian). Studies in number theory, 6. MR 579787
- W. Narkiewicz, Distribution of coefficients of Eisenstein series in residue classes, Acta Arith. 43 (1983), no. 1, 83–92. MR 730850, DOI 10.4064/aa-43-1-83-92
- W. Narkiewicz, Euler’s function and the sum of divisors, J. Reine Angew. Math. 323 (1981), 200–212. MR 611453, DOI 10.1515/crll.1981.323.200
- Władysław Narkiewicz, Uniform distribution of sequences of integers in residue classes, Lecture Notes in Mathematics, vol. 1087, Springer-Verlag, Berlin, 1984. MR 766563, DOI 10.1007/BFb0100180
- W. Narkiewicz and F. Rayner, Distribution of values of $\sigma _{2}\,(n)$ in residue classes, Monatsh. Math. 94 (1982), no. 2, 133–141. MR 678048, DOI 10.1007/BF01301931
- Jan Śliwa, On distribution of values of $\sigma (n)$ in residue classes, Colloq. Math. 27 (1973), 283–291, 332. MR 327702, DOI 10.4064/cm-27-2-283-291
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 50 (1988), 335-342
- MSC: Primary 11N69; Secondary 11N37
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917839-9
- MathSciNet review: 917839