## Weak uniform distribution for divisor functions. I

HTML articles powered by AMS MathViewer

- by Francis J. Rayner PDF
- Math. Comp.
**50**(1988), 335-342 Request permission

## Abstract:

Narkiewicz (reference [3, pp. 204-205]) has proposed an algorithm for determining the moduli with respect to which a given arithmetic function (of suitable type) has weak uniform distribution. The class of functions to which this algorithm applies includes the divisor functions ${\sigma _i}$. The present paper gives an improvement to the algorithm for odd values of*i*, which makes computation feasible for values of

*i*up to 200. The results of calculations for odd values of

*i*in the range $1 \leq i \leq 199$ are reported.

## References

- O. M. Fomenko,
*The distribution of values of multiplicative functions modulo a prime number*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**93**(1980), 218–224, 229 (Russian). Studies in number theory, 6. MR**579787** - W. Narkiewicz,
*Distribution of coefficients of Eisenstein series in residue classes*, Acta Arith.**43**(1983), no. 1, 83–92. MR**730850**, DOI 10.4064/aa-43-1-83-92 - W. Narkiewicz,
*Euler’s function and the sum of divisors*, J. Reine Angew. Math.**323**(1981), 200–212. MR**611453**, DOI 10.1515/crll.1981.323.200 - Władysław Narkiewicz,
*Uniform distribution of sequences of integers in residue classes*, Lecture Notes in Mathematics, vol. 1087, Springer-Verlag, Berlin, 1984. MR**766563**, DOI 10.1007/BFb0100180 - W. Narkiewicz and F. Rayner,
*Distribution of values of $\sigma _{2}\,(n)$ in residue classes*, Monatsh. Math.**94**(1982), no. 2, 133–141. MR**678048**, DOI 10.1007/BF01301931 - Jan Śliwa,
*On distribution of values of $\sigma (n)$ in residue classes*, Colloq. Math.**27**(1973), 283–291, 332. MR**327702**, DOI 10.4064/cm-27-2-283-291

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp.
**50**(1988), 335-342 - MSC: Primary 11N69; Secondary 11N37
- DOI: https://doi.org/10.1090/S0025-5718-1988-0917839-9
- MathSciNet review: 917839