Asymptotic expansions for the discretization error of least squares solutions of linear boundary value problems
HTML articles powered by AMS MathViewer
- by Klaus Böhmer and John Locker PDF
- Math. Comp. 51 (1988), 75-91 Request permission
Abstract:
For determining least squares solutions of linear boundary value problems, the method of regularization provides uniquely solvable boundary value problems, which are solved with difference methods. The determination of the coefficients in an asymptotic expansion of the discretization error in powers of the regularization and discretization parameters $\alpha$ and h, respectively, is an ill-posed problem. We present here an asymptotic expansion of this type and discuss the numerical implications for Richardson extrapolation, thereby establishing for the first time methods of arbitrarily high order.References
- Wolf-Jürgen Beyn, Discrete Green’s functions and strong stability properties of the finite difference method, Applicable Anal. 14 (1982/83), no. 2, 73–98. MR 678496 K. Böhmer, Fehlerasymptotik von Diskretisierungsverfahren und ihre numerische Anwendung, Interner Bericht Nr. 77/2, Institut für Praktische Mathematik, Universität Karlsruhe, 1977.
- Klaus Böhmer, Discrete Newton methods and iterated defect corrections, Numer. Math. 37 (1981), no. 2, 167–192. MR 623039, DOI 10.1007/BF01398251
- K. Böhmer and J. Locker, Asymptotic expansions in ill-posed boundary value problems, Z. Angew. Math. Mech. 61 (1981), no. 5, T272–T273. MR 648245 K. Böhmer & J. Locker, The Mathematical Foundations of Asymptotic Expansions for the Discretization Error of Least Squares Solutions of Linear Boundary Value Problems, Technical Report, Colorado State University, Fort Collins, Colorado, 1984.
- J. Albrecht and L. Collatz (eds.), Numerische Behandlung von Differentialgleichungen. Band 3, Internationale Schriftenreihe zur Numerischen Mathematik [International Series of Numerical Mathematics], vol. 56, Birkhäuser Verlag, Basel, 1981 (German). MR 784038, DOI 10.1007/978-3-0348-5454-2
- Henning Esser, Stabilitätsungleichungen für Diskretisierungen von Randwertaufgaben gewöhnlicher Differentialgleichungen, Numer. Math. 28 (1977), no. 1, 69–100 (German, with English summary). MR 461926, DOI 10.1007/BF01403858
- Rolf Dieter Grigorieff, Zur Theorie linearer approximationsregulärer Operatoren. I, II, Math. Nachr. 55 (1973), 233–249; ibid. 55 (1973), 251–263 (German). MR 348533, DOI 10.1002/mana.19730550113
- R. Kannan and John Locker, Continuous dependence of least squares solutions of linear boundary value problems, Proc. Amer. Math. Soc. 59 (1976), no. 1, 107–110. MR 409947, DOI 10.1090/S0002-9939-1976-0409947-X
- H. B. Keller and V. Pereyra, Difference methods and deferred corrections for ordinary boundary value problems, SIAM J. Numer. Anal. 16 (1979), no. 2, 241–259. MR 526487, DOI 10.1137/0716018
- Heinz-Otto Kreiss, Difference approximations for boundary and eigenvalue problems for ordinary differential equations, Math. Comp. 26 (1972), 605–624. MR 373296, DOI 10.1090/S0025-5718-1972-0373296-3
- John Locker and P. M. Prenter, Regularization with differential operators. I. General theory, J. Math. Anal. Appl. 74 (1980), no. 2, 504–529. MR 572669, DOI 10.1016/0022-247X(80)90145-6
- John Locker and P. M. Prenter, Regularization with differential operators. I. General theory, J. Math. Anal. Appl. 74 (1980), no. 2, 504–529. MR 572669, DOI 10.1016/0022-247X(80)90145-6
- John Locker and P. M. Prenter, Regularization and linear boundary value problems, Applicable Anal. 20 (1985), no. 1-2, 129–149. MR 808065, DOI 10.1080/00036818508839565
- Frank Natterer, Regularisierung schlecht gestellter Probleme durch Projektionsverfahren, Numer. Math. 28 (1977), no. 3, 329–341 (German, with English summary). MR 488721, DOI 10.1007/BF01389972
- Victor Pereyra, On improving an approximate solution of a functional equation by deferred corrections, Numer. Math. 8 (1966), 376–391. MR 203967, DOI 10.1007/BF02162981
- Victor Pereyra, Iterated deferred corrections for nonlinear operator equations, Numer. Math. 10 (1967), 316–323. MR 221760, DOI 10.1007/BF02162030
- David L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach. 9 (1962), 84–97. MR 134481, DOI 10.1145/321105.321114 L. F. Richardson, "The deferred approach to the limit. I: Single lattice," Philos. Trans. Roy. Soc. London Ser. A, v. 226, 1927, pp. 299-349.
- Robert D. Russell, A comparison of collocation and finite differences for two-point boundary value problems, SIAM J. Numer. Anal. 14 (1977), no. 1, 19–39. MR 451745, DOI 10.1137/0714003
- Robert D. Skeel, A theoretical framework for proving accuracy results for deferred corrections, SIAM J. Numer. Anal. 19 (1982), no. 1, 171–196. MR 646602, DOI 10.1137/0719009
- Hans J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer Tracts in Natural Philosophy, Vol. 23, Springer-Verlag, New York-Heidelberg, 1973. MR 0426438, DOI 10.1007/978-3-642-65471-8 A. N. Tikhonov, "Solution of incorrectly formulated problems and the regularization method," Soviet Math. Dokl., v. 4, 1963, pp. 1035-1038. A. N. Tikhonov, "Regularization of incorrectly posed problems," Soviet Math. Dokl., v. 4, 1963, pp. 1624-1627.
- Gennadi Vainikko, Funktionalanalysis der Diskretisierungsmethoden, B. G. Teubner Verlag, Leipzig, 1976 (German). Mit Englischen und Russischen Zusammenfassungen; Teubner-Texte zur Mathematik. MR 0468159
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 75-91
- MSC: Primary 65L10
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942144-4
- MathSciNet review: 942144