Convergence rates for regularized solutions

Author:
Mark A. Lukas

Journal:
Math. Comp. **51** (1988), 107-131

MSC:
Primary 65R20; Secondary 41A25, 45L05

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942146-8

MathSciNet review:
942146

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a first-kind integral equation \[ \mathcal {K}u(x) = \int _0^1 {K(x,t)u(t) dt = f(x)} \] with discrete noisy data ${d_i} = f({x_i}) + {\varepsilon _i}$, $i = 1,2, \ldots ,n$, let ${u_{n\alpha }}$ be the minimizer in a Hilbert space *W* of the regularization functional $(1/n)\sum {(\mathcal {K}} u({x_i}) - {d_i}{)^2} + \alpha \left \| u \right \|_W^2$. It is shown that in any one of a wide class of norms, which includes ${\left \| \cdot \right \|_W}$, if $\alpha \to 0$ in a certain way as $n \to \infty$, then ${u_{n\alpha }}$ converges to the true solution ${u_0}$. Convergence rates are obtained and are used to estimate the optimal regularization parameter $\alpha$.

- N. Aronszajn,
*Theory of reproducing kernels*, Trans. Amer. Math. Soc.**68**(1950), 337â€“404. MR**51437**, DOI https://doi.org/10.1090/S0002-9947-1950-0051437-7 - Jean-Pierre Aubin,
*Applied functional analysis*, John Wiley & Sons, New York-Chichester-Brisbane, 1979. Translated from the French by Carole Labrousse; With exercises by Bernard Cornet and Jean-Michel Lasry. MR**549483** - Colin Bennett and John E. Gilbert,
*Homogeneous algebras on the circle. II. Multipliers, Ditkin conditions*, Ann. Inst. Fourier (Grenoble)**22**(1972), no. 3, 21â€“50 (English, with French summary). MR**338783** - Dennis D. Cox,
*Asymptotics for $M$-type smoothing splines*, Ann. Statist.**11**(1983), no. 2, 530â€“551. MR**696065** - Dennis D. Cox,
*Multivariate smoothing spline functions*, SIAM J. Numer. Anal.**21**(1984), no. 4, 789â€“813. MR**749371**, DOI https://doi.org/10.1137/0721053
D. D. Cox, - Peter Craven and Grace Wahba,
*Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation*, Numer. Math.**31**(1978/79), no. 4, 377â€“403. MR**516581**, DOI https://doi.org/10.1007/BF01404567 - John W. Hilgers,
*On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems*, SIAM J. Numer. Anal.**13**(1976), no. 2, 172â€“184. MR**471293**, DOI https://doi.org/10.1137/0713018 - Einar Hille,
*Introduction to general theory of reproducing kernels*, Rocky Mountain J. Math.**2**(1972), no. 3, 321â€“368. MR**315109**, DOI https://doi.org/10.1216/RMJ-1972-2-3-321 - M. Z. Nashed and Grace Wahba,
*Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations*, SIAM J. Math. Anal.**5**(1974), 974â€“987. MR**358405**, DOI https://doi.org/10.1137/0505095 - Frank Natterer,
*Error bounds for Tikhonov regularization in Hilbert scales*, Applicable Anal.**18**(1984), no. 1-2, 29â€“37. MR**762862**, DOI https://doi.org/10.1080/00036818408839508 - John Rice and Murray Rosenblatt,
*Integrated mean squared error of a smoothing spline*, J. Approx. Theory**33**(1981), no. 4, 353â€“369. MR**646156**, DOI https://doi.org/10.1016/0021-9045%2881%2990066-6 - John Rice and Murray Rosenblatt,
*Smoothing splines: regression, derivatives and deconvolution*, Ann. Statist.**11**(1983), no. 1, 141â€“156. MR**684872** - Frigyes Riesz and BĂ©la Sz.-Nagy,
*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727**
P. Speckman, "The asymptotic integrated mean square error for smoothing noisy data by splines," - Ulrich Tippenhauer,
*Methoden zur Bestimmung von Reprokernen*, J. Approximation Theory**21**(1977), no. 4, 394â€“410 (German, with English summary). MR**467272**, DOI https://doi.org/10.1016/0021-9045%2877%2990010-7 - H. Triebel,
*Interpolation theory, function spaces, differential operators*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR**500580** - F. Utreras Diaz,
*Sur le choix du paramĂ¨tre dâ€™ajustement dans le lissage par fonctions spline*, Numer. Math.**34**(1980), no. 1, 15â€“28 (French, with English summary). MR**560791**, DOI https://doi.org/10.1007/BF01463995 - Florencio Utreras,
*Natural spline functions, their associated eigenvalue problem*, Numer. Math.**42**(1983), no. 1, 107â€“117. MR**716477**, DOI https://doi.org/10.1007/BF01400921 - Grace Wahba,
*Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind*, J. Approximation Theory**7**(1973), 167â€“185. MR**346453**, DOI https://doi.org/10.1016/0021-9045%2873%2990064-6 - Grace Wahba,
*Practical approximate solutions to linear operator equations when the data are noisy*, SIAM J. Numer. Anal.**14**(1977), no. 4, 651â€“667. MR**471299**, DOI https://doi.org/10.1137/0714044 - Grace Wahba,
*Constrained regularization for ill-posed linear operator equations, with applications in meteorology and medicine*, Statistical decision theory and related topics, III, Vol. 2 (West Lafayette, Ind., 1981) Academic Press, New York, 1982, pp. 383â€“418. MR**705326**

*Approximation of Method of Regularization Estimators*, Technical Report No. 723, Dept. of Statistics, Univ. of Wisconsin-Madison, 1983.

*Numer. Math.*(To appear.)

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
41A25,
45L05

Retrieve articles in all journals with MSC: 65R20, 41A25, 45L05

Additional Information

Article copyright:
© Copyright 1988
American Mathematical Society