Convergence rates for regularized solutions
HTML articles powered by AMS MathViewer
- by Mark A. Lukas PDF
- Math. Comp. 51 (1988), 107-131 Request permission
Abstract:
Given a first-kind integral equation \[ \mathcal {K}u(x) = \int _0^1 {K(x,t)u(t) dt = f(x)} \] with discrete noisy data ${d_i} = f({x_i}) + {\varepsilon _i}$, $i = 1,2, \ldots ,n$, let ${u_{n\alpha }}$ be the minimizer in a Hilbert space W of the regularization functional $(1/n)\sum {(\mathcal {K}} u({x_i}) - {d_i}{)^2} + \alpha \left \| u \right \|_W^2$. It is shown that in any one of a wide class of norms, which includes ${\left \| \cdot \right \|_W}$, if $\alpha \to 0$ in a certain way as $n \to \infty$, then ${u_{n\alpha }}$ converges to the true solution ${u_0}$. Convergence rates are obtained and are used to estimate the optimal regularization parameter $\alpha$.References
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, DOI 10.1090/S0002-9947-1950-0051437-7
- Jean-Pierre Aubin, Applied functional analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1979. Translated from the French by Carole Labrousse; With exercises by Bernard Cornet and Jean-Michel Lasry. MR 549483
- Colin Bennett and John E. Gilbert, Homogeneous algebras on the circle. II. Multipliers, Ditkin conditions, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 21–50 (English, with French summary). MR 338783
- Dennis D. Cox, Asymptotics for $M$-type smoothing splines, Ann. Statist. 11 (1983), no. 2, 530–551. MR 696065
- Dennis D. Cox, Multivariate smoothing spline functions, SIAM J. Numer. Anal. 21 (1984), no. 4, 789–813. MR 749371, DOI 10.1137/0721053 D. D. Cox, Approximation of Method of Regularization Estimators, Technical Report No. 723, Dept. of Statistics, Univ. of Wisconsin-Madison, 1983.
- Peter Craven and Grace Wahba, Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31 (1978/79), no. 4, 377–403. MR 516581, DOI 10.1007/BF01404567
- John W. Hilgers, On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems, SIAM J. Numer. Anal. 13 (1976), no. 2, 172–184. MR 471293, DOI 10.1137/0713018
- Einar Hille, Introduction to general theory of reproducing kernels, Rocky Mountain J. Math. 2 (1972), no. 3, 321–368. MR 315109, DOI 10.1216/RMJ-1972-2-3-321
- M. Z. Nashed and Grace Wahba, Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations, SIAM J. Math. Anal. 5 (1974), 974–987. MR 358405, DOI 10.1137/0505095
- Frank Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable Anal. 18 (1984), no. 1-2, 29–37. MR 762862, DOI 10.1080/00036818408839508
- John Rice and Murray Rosenblatt, Integrated mean squared error of a smoothing spline, J. Approx. Theory 33 (1981), no. 4, 353–369. MR 646156, DOI 10.1016/0021-9045(81)90066-6
- John Rice and Murray Rosenblatt, Smoothing splines: regression, derivatives and deconvolution, Ann. Statist. 11 (1983), no. 1, 141–156. MR 684872
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727 P. Speckman, "The asymptotic integrated mean square error for smoothing noisy data by splines," Numer. Math. (To appear.)
- Ulrich Tippenhauer, Methoden zur Bestimmung von Reprokernen, J. Approximation Theory 21 (1977), no. 4, 394–410 (German, with English summary). MR 467272, DOI 10.1016/0021-9045(77)90010-7
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- F. Utreras Diaz, Sur le choix du paramètre d’ajustement dans le lissage par fonctions spline, Numer. Math. 34 (1980), no. 1, 15–28 (French, with English summary). MR 560791, DOI 10.1007/BF01463995
- Florencio Utreras, Natural spline functions, their associated eigenvalue problem, Numer. Math. 42 (1983), no. 1, 107–117. MR 716477, DOI 10.1007/BF01400921
- Grace Wahba, Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind, J. Approximation Theory 7 (1973), 167–185. MR 346453, DOI 10.1016/0021-9045(73)90064-6
- Grace Wahba, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14 (1977), no. 4, 651–667. MR 471299, DOI 10.1137/0714044
- Grace Wahba, Constrained regularization for ill-posed linear operator equations, with applications in meteorology and medicine, Statistical decision theory and related topics, III, Vol. 2 (West Lafayette, Ind., 1981) Academic Press, New York, 1982, pp. 383–418. MR 705326
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 107-131
- MSC: Primary 65R20; Secondary 41A25, 45L05
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942146-8
- MathSciNet review: 942146