An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions
HTML articles powered by AMS MathViewer
- by Walter Gautschi and Sotirios E. Notaris PDF
- Math. Comp. 51 (1988), 231-248 Request permission
Abstract:
We study Gauss-Kronrod quadrature formulae for the Jacobi weight function ${w^{(\alpha ,\beta )}}(t) = {(1 - t)^\alpha }{(1 + t)^\beta }$ and its special case $\alpha = \beta = \lambda - \frac {1}{2}$ of the Gegenbauer weight function. We are interested in delineating regions in the $(\alpha ,\beta )$-plane, resp. intervals in $\lambda$, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes and the Kronrod nodes interlace; (b) all nodes contained in $( - 1,1)$; (c) all weights positive; (d) only real nodes (not necessarily satisfying (a) and/or (b)). We determine the respective regions numerically for $n = 1(1)20(4)40$ in the Gegenbauer case, and for $n = 1(1)10$ in the Jacobi case, where n is the number of Gauss nodes. Algebraic criteria, in particular the vanishing of appropriate resultants and discriminants, are used to determine the boundaries of the regions identifying properties (a) and (d). The regions for properties (b) and (c) are found more directly. A number of conjectures are suggested by the numerical results. Finally, the Gauss-Kronrod formula for the weight ${w^{(\alpha ,1/2)}}$ is obtained from the one for the weight ${w^{(\alpha ,\alpha )}}$, and similarly, the Gauss-Kronrod formula with an odd number of Gauss nodes for the weight function $w(t) = |t{|^\gamma }{(1 - {t^2})^\alpha }$ is derived from the Gauss-Kronrod formula for the weight ${w^{(\alpha ,(1 + \gamma )/2)}}$.References
- Franca Caliò, Walter Gautschi, and Elena Marchetti, On computing Gauss-Kronrod quadrature formulae, Math. Comp. 47 (1986), no. 176, 639–650, S57–S63. MR 856708, DOI 10.1090/S0025-5718-1986-0856708-8 J. J. Dongarra, C. B. Moler, J. R. Bunch & G. W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, Pa., 1979.
- Walter Gautschi, A survey of Gauss-Christoffel quadrature formulae, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 72–147. MR 661060
- K. V. Laščenov, On a class of orthogonal polynomials, Leningrad. Gos. Ped. Inst. Uč. Zap. 89 (1953), 167–189 (Russian). MR 0075340
- Giovanni Monegato, A note on extended Gaussian quadrature rules, Math. Comp. 30 (1976), no. 136, 812–817. MR 440878, DOI 10.1090/S0025-5718-1976-0440878-3
- Giovanni Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), no. 2, 137–158. MR 652464, DOI 10.1137/1024039 L. N. Puolokaǐnen, On the Zeros of Orthogonal Polynomials in the Case of a Sign-Variable Weight Function of Special Form, Diploma paper, Leningrad. Gos. Univ., 1964. (Russian)
- Philip Rabinowitz, Gauss-Kronrod integration rules for Cauchy principal value integrals, Math. Comp. 41 (1983), no. 163, 63–78. MR 701624, DOI 10.1090/S0025-5718-1983-0701624-2 G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., v. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975. B. L. van der Waerden, Algebra, vol. 1, Ungar, New York, 1970.
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 231-248
- MSC: Primary 65D32
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942152-3
- MathSciNet review: 942152