A computer algorithm for determining the Hausdorff dimension of certain fractals
Author:
Lucy Garnett
Journal:
Math. Comp. 51 (1988), 291-300
MSC:
Primary 58F11; Secondary 30D05
DOI:
https://doi.org/10.1090/S0025-5718-1988-0942156-0
MathSciNet review:
942156
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A fractal is a set which has nonintegral Hausdorff dimension. Computation of the dimension directly from the definition would be very time-consuming on a computer. However, the dimension can be computed using Newton’s method if there exists a self-expanding map on the set. This technique is applied to compute the dimension of the Julia set of the quadratic mapping $z \to {z^2} + c$ for small real values of c.
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI https://doi.org/10.1090/S0273-0979-1984-15240-6
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- Benoit B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., San Francisco, Calif., 1982. Schriftenreihe für den Referenten. [Series for the Referee]. MR 665254
- Benoit B. Mandelbrot, Discussion paper: fractals, attractors, and the fractal dimension, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 463–464. MR 556850 V. A. Norton, "Generation and display of geometric fractals in 3-D," Computer Graphics, v. 16, 1982, pp. 61-67.
- Edward Ott, Strange attractors and chaotic motions of dynamical systems, Rev. Modern Phys. 53 (1981), no. 4, 655–671. MR 629209, DOI https://doi.org/10.1103/RevModPhys.53.655
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI https://doi.org/10.1017/s0143385700009603 D. Sullivan, Seminar on Conformal and Hyperbolic Geometry, Inst. Hautes Études Sci. Seminar notes, 1982, pp. 1-92.
Retrieve articles in Mathematics of Computation with MSC: 58F11, 30D05
Retrieve articles in all journals with MSC: 58F11, 30D05
Additional Information
Article copyright:
© Copyright 1988
American Mathematical Society