Computing heights on elliptic curves
HTML articles powered by AMS MathViewer
- by Joseph H. Silverman PDF
- Math. Comp. 51 (1988), 339-358 Request permission
Abstract:
We describe how to compute the canonical height of points on elliptic curves. Tate has given a rapidly converging series for Archimedean local heights over R. We describe a modified version of Tate’s series which also converges over C, and give an efficient procedure for calculating local heights at non-Archimedean places. In this way we can calculate heights over number fields having complex embeddings. We also give explicit estimates for the tail of our series, and present several examples.References
- Joe P. Buhler, Benedict H. Gross, and Don B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank $3$, Math. Comp. 44 (1985), no. 170, 473–481. MR 777279, DOI 10.1090/S0025-5718-1985-0777279-X
- David A. Cox and Steven Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math. 53 (1979), no. 1, 1–44. MR 538682, DOI 10.1007/BF01403189
- P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 53–73 (French). MR 0387292
- Benedict H. Gross, Local heights on curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 327–339. MR 861983
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Michael Laska, An algorithm for finding a minimal Weierstrass equation for an elliptic curve, Math. Comp. 38 (1982), no. 157, 257–260. MR 637305, DOI 10.1090/S0025-5718-1982-0637305-2
- D. W. Masser and G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), no. 3, 407–464. MR 704399, DOI 10.1007/BF01398396 J. H. Silverman, The Néron-Tate Height on Elliptic Curves, Ph.D. thesis, Harvard, 1981.
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves, J. Reine Angew. Math. 378 (1987), 60–100. MR 895285, DOI 10.1515/crll.1987.378.60 J. H. Silverman, Elliptic Curve Calculator v. 5.05, a program for the Apple Macintosh computer, 1987.
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 33–52. MR 0393039 J. T. Tate, Letter to J.-P. Serre, Oct. 1, 1979.
- Heinz M. Tschöpe and Horst G. Zimmer, Computation of the Néron-Tate height on elliptic curves, Math. Comp. 48 (1987), no. 177, 351–370. MR 866121, DOI 10.1090/S0025-5718-1987-0866121-6 B. L. van der Waerden, Algebra, 7th ed., Ungar, New York, 1970.
- Don Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), no. 177, 425–436. MR 866125, DOI 10.1090/S0025-5718-1987-0866125-3
- Horst G. Zimmer, Quasifunctions on elliptic curves over local fields, J. Reine Angew. Math. 307(308) (1979), 221–246. MR 534221, DOI 10.1515/crll.1979.307-308.221
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 339-358
- MSC: Primary 11G05; Secondary 11D25, 11Y40, 14G25, 14K15
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942161-4
- MathSciNet review: 942161