On $A^ 4+B^ 4+C^ 4=D^ 4$
HTML articles powered by AMS MathViewer
- by Noam D. Elkies PDF
- Math. Comp. 51 (1988), 825-835 Request permission
Abstract:
We use elliptic curves to find infinitely many solutions to ${A^4} + {B^4} + {C^4} = {D^4}$ in coprime natural numbers A, B, C, and D, starting with \[ {2682440^4} + {15365639^4} + {18796760^4} = {20615673^4}.\] We thus disprove the $n = 4$ case of Euler’s conjectured generalization of Fermat’s Last Theorem. We further show that the corresponding rational points $( \pm A/D, \pm B/D, \pm C/D)$ on the surface ${r^4} + {s^4} + {t^4} = 1$ are dense in the real locus. We also discuss the smallest solution, found subsequently by Roger Frye.References
-
A. Bremner, personal communication, Aug. 1987.
- B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin-New York, 1975. MR 0376533
- V. A. Dem′janenko, L. Euler’s conjecture, Acta Arith. 25 (1973/74), 127–135 (Russian). MR 360462 L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis, G. E. Stechert & Co., New York, 1934.
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR 661047, DOI 10.1007/978-1-4757-1779-2
- L. J. Lander and T. R. Parkin, Counterexample to Euler’s conjecture on sums of like powers, Bull. Amer. Math. Soc. 72 (1966), 1079. MR 197389, DOI 10.1090/S0002-9904-1966-11654-3
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8 D. Zagier, "On the equation ${w^4} + {x^4} + {y^4} = {z^4}$," unpublished note, 1987.
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 825-835
- MSC: Primary 11D25; Secondary 11G35, 11G40
- DOI: https://doi.org/10.1090/S0025-5718-1988-0930224-9
- MathSciNet review: 930224