On the Period Length of Pseudorandom Vector Sequences Generated by Matrix Generators

By Jürgen Eichenauer-Herrmann, Holger Grothe, and Jürgen Lehn

Abstract. In Tahmi [5], Niederreiter [4], Afflerbach and Grothe [1], and Grothe [2] linear recursive congruential matrix generators for generating r-dimensional pseudorandom vectors are analyzed. In particular, conditions are established which ensure that the period length equals \(p^r - 1 \) for any nonzero starting vector in case of a prime modulus \(p \). For a modulus of the form \(p^\alpha \), \(\alpha \geq 2 \) and \(p \) prime, this paper describes a simple method for constructing matrix generators having the maximal possible period length \((p^r - 1) \cdot p^{\alpha - 1} \) for any starting vector which is nonzero modulo \(p \).

1. Introduction and Notation. A linear recursive congruential matrix generator for generating r-dimensional pseudorandom vectors is of the form

\[
\tilde{x}_{n+1} = A \cdot \tilde{x}_n \pmod{m}, \quad \tilde{x}_{n+1} \in \mathbb{Z}_m^r, \quad n \geq 0,
\]

where the modulus \(m \) is a positive integer, \(\mathbb{Z}_m = \{0, 1, \ldots, m - 1\} \), \(\tilde{x}_0 \in \mathbb{Z}_m^r \), and \(A \in \mathbb{Z}_m^{r \times r} \), i.e., \(A \) is an \(r \times r \)-matrix with elements in \(\mathbb{Z}_m \). In the sequel it is assumed that the matrix \(A \) is nonsingular modulo \(m \). Then the vector sequence \((\tilde{x}_n)_{n \geq 0}\) generated by (1) is purely periodic, and the smallest positive integer \(\lambda = \lambda(A, \tilde{x}_0, m) \) with \(\tilde{x}_\lambda = \tilde{x}_0 \) is called the period length of the vector sequence \((\tilde{x}_n)_{n \geq 0}\).

Analogously, the matrix sequence \((A_n)_{n \geq 0}\) with \(A_n \equiv A^n \pmod{m} \), \(A_n \in \mathbb{Z}_m^{r \times r} \), is purely periodic, and the smallest positive integer \(\lambda = \lambda(A, m) \) for which \(A_\lambda \) equals the identity matrix \(I \) is called the period length of the matrix sequence \((A_n)_{n \geq 0}\).

The following two remarks are immediate consequences of these definitions.

Remark 1. The period length \(\lambda(A, \tilde{x}_0, m) \) of the vector sequence \((\tilde{x}_n)_{n \geq 0}\) divides the period length \(\lambda(A, m) \) of the matrix sequence \((A_n)_{n \geq 0}\) for any starting vector \(\tilde{x}_0 \in \mathbb{Z}_m^r \).

Remark 2. If \(A_\nu = I \) for some positive integer \(\nu \), then the period length \(\lambda(A, m) \) of the matrix sequence \((A_n)_{n \geq 0}\) divides \(\nu \).

It is well known (cf. Tahmi [5], Niederreiter [4], and Grothe [2]) that \(\lambda(A, \tilde{x}_0, p) = \lambda(A, p) = p^r - 1 \) for any starting vector \(\tilde{x}_0 \in \mathbb{Z}_p^r \setminus \{0\} \) in case of a prime modulus \(m = p \) if the characteristic polynomial of the matrix \(A \) is primitive modulo \(p \). In this paper the case of a modulus \(m = p^\alpha \), \(\alpha \geq 2 \), is considered where \(p \) is a prime number. It is shown that for \(p \geq 3 \) or \(r \geq 2 \) there exist matrix generators (1) with period length \((p^r - 1) \cdot p^{\alpha - 1} \) for any starting vector which is nonzero modulo \(p \), and a simple method is described for determining such a generator. Observe that \((p^r - 1) \cdot p^{\alpha - 1} \) is the maximal possible period length according to the following technical lemma.

Received March 1, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 65C10; Secondary 11K45.

Key words and phrases. Pseudorandom vector sequences, matrix generator, period length.

Lemma. Let \(A \in \mathbb{Z}_p^{r \times r} \), \(\alpha \geq 1 \), be a matrix which is nonsingular modulo \(p \), and define matrices \(A_n \in \mathbb{Z}_p^{r \times r} \) by \(A_n \equiv A^n \pmod{p^{\alpha+1}} \), \(n \geq 0 \). Let \(\lambda_\alpha = \lambda(A, p\alpha) \) and \(\lambda_{\alpha+1} = \lambda(A, p^{\alpha+1}) \) denote the period lengths of the matrix sequence \((A_n)_{n \geq 0} \) modulo \(p^\alpha \) and modulo \(p^{\alpha+1} \), respectively. Then
\[
\lambda_{\alpha+1} = \begin{cases}
\lambda_\alpha & \text{for } A^{\lambda_\alpha} \equiv I \pmod{p^{\alpha+1}}, \\
\lambda_\alpha \cdot p & \text{for } A^{\lambda_\alpha} \not\equiv I \pmod{p^{\alpha+1}}.
\end{cases}
\]

Proof. From \(A^{\lambda_\alpha} \equiv I \pmod{p^\alpha} \) it follows that \(A^{\lambda_\alpha} = I + p^\alpha \cdot B \) for some matrix \(B \in \mathbb{Z}_p^{r \times r} \). Therefore,
\[
A^{\lambda_\alpha} \cdot p = (I + p^\alpha \cdot B)^p = I + \binom{p}{1} \cdot p^\alpha \cdot B + \binom{p}{2} \cdot (p^\alpha \cdot B)^2 + \cdots + (p^\alpha \cdot B)^p,
\]
which yields \(A^{\lambda_\alpha} \cdot p \equiv I \pmod{p^{\alpha+1}} \), i.e., \(\lambda_{\alpha+1} \) divides \(\lambda_\alpha \cdot p \) according to Remark 2.

From \(A^{\lambda_{\alpha+1}} \equiv I \pmod{p^{\alpha+1}} \) it follows that \(A^{\lambda_{\alpha+1}} \equiv I \pmod{p^{\alpha}} \), i.e., \(\lambda_\alpha \) divides \(\lambda_{\alpha+1} \) according to Remark 2, which proves the lemma. \(\square \)

The purpose of this paper is to prove the following result.

Theorem. Let \(B \in \mathbb{Z}_p^{r \times r} \), \(\alpha \geq 2 \), be a matrix whose characteristic polynomial is primitive modulo \(p \). Then
\[
B^{p^{\alpha-1}} \equiv I + p^\alpha \cdot C \pmod{p^2}
\]
for some matrix \(C \in \mathbb{Z}_p^{r \times r} \). Let \(D \in \mathbb{Z}_p^{r \times r} \) denote an arbitrary matrix with \(B \cdot D \equiv D \cdot B \pmod{p} \),

\(\det(D) \not\equiv 0 \pmod{p} \) for \(p \geq 3 \),

and

\(\det(D) \equiv \det(D + I) \equiv 1 \pmod{2} \) for \(p = 2 \).

Define a matrix \(A \in \mathbb{Z}_p^{r \times r} \) by
\[
A \equiv B \cdot (I + p^\alpha \cdot (C - D)) \pmod{p^\alpha}.
\]
Then the period length of the vector sequence \((\vec{x}_n)_{n \geq 0} \) generated according to (1) with matrix \(A \) and modulus \(m = p^\alpha \) is given by
\[
\lambda(A, \vec{x}_0, p^\alpha) = (p^\alpha - 1) \cdot p^{\alpha-1}
\]
for any starting vector \(\vec{x}_0 \in \mathbb{Z}_p^r \) with \(\vec{x}_0 \not\equiv \vec{0} \pmod{p} \).

Proof. The proof is subdivided into four parts (i) to (iv).

(i) Because of \(A \equiv B \pmod{p} \) according to (5) it follows that
\[
\lambda(A, \vec{x}_0, p) = \lambda(A, p) = p^r - 1
\]
for any starting vector \(\vec{x}_0 \in \mathbb{Z}_p^r \setminus \{\vec{0}\} \), since the characteristic polynomial of the matrix \(B \) is primitive modulo \(p \). In particular, \(B^{p^r-1} \equiv I \pmod{p} \) holds. Hence a matrix \(C \) with (2) exists. Observe that (2) yields \(B \cdot C \equiv C \cdot B \pmod{p} \), which implies that \(B \cdot (C - D) \equiv (C - D) \cdot B \pmod{p} \) because of the hypothesis \(B \cdot D \equiv D \cdot B \pmod{p} \). Therefore (5) and (2) yield
\[
A^{p^{\alpha-1}} \equiv [B \cdot (I + p^\alpha \cdot (C - D))]^{p^{\alpha-1}} \equiv B^{p^{\alpha-1}} \cdot (I + (p^\alpha - 1) \cdot p \cdot (C - D))
\]
\[
\equiv (I + p^\alpha \cdot C) \cdot (I - p \cdot (C - D)) \equiv I + p \cdot D \pmod{p^2}.
\]
If $p = 2$ then it follows from (7) that

$$A^{2^r-1} = I + 2 \cdot D + 4 \cdot E$$

for some matrix $E \in \mathbb{Z}^{r \times r}$ and hence

$$A^{(2^r-1)^2} = (I + 2 \cdot D + 4 \cdot E)^2 = I + 4 \cdot D + 4 \cdot D^2 + 8 \cdot F$$

for some matrix $F \in \mathbb{Z}^{r \times r}$, i.e.,

$$A^{(2^r-1)^2} \equiv I + 4 \cdot D \cdot (D + I) \pmod{8}.$$

(ii) Now it is shown by induction that in case of $p \geq 3$,

$$A^{(p^r-1) \cdot p^\nu} \equiv I + p^\nu + 1 \cdot D \pmod{p^\nu+2} \tag{8}$$

for $0 \leq \nu \leq \alpha - 2$. Obviously, (7) is equivalent to (8) for $\nu = 0$. If (8) is valid for some ν with $0 \leq \nu \leq \alpha - 3$, then

$$A^{(p^r-1) \cdot p^\nu} = I + p^\nu + 1 \cdot D + p^\nu + 2 \cdot E_\nu$$

for some matrix $E_\nu \in \mathbb{Z}^{r \times r}$ and hence

$$A^{(p^r-1) \cdot p^{\nu+1}} = (I + p^{\nu+1} \cdot (D + p \cdot E_\nu))^2 = I + p^{\nu+2} \cdot (D + p \cdot E_\nu) + p^{\nu+3} \cdot F_\nu$$

for some matrix $F_\nu \in \mathbb{Z}^{r \times r}$ because of $p \geq 3$, which yields

$$A^{(p^r-1) \cdot p^{\nu+1}} \equiv I + p^{\nu+2} \cdot D \pmod{p^{\nu+3}}.$$

Therefore (8) holds for $0 \leq \nu \leq \alpha - 2$. It can be similarly proved that in case of $p = 2$,

$$A^{(2^r-1) \cdot 2^\nu} \equiv I + 2^{\nu+1} \cdot D \cdot (D + I) \pmod{2^{\nu+2}} \tag{9}$$

for $1 \leq \nu \leq \alpha - 2$.

(iii) Because of (3), (4), (6), (7), (8) and (9) it follows from the lemma that

$$\lambda(A, p^{\nu+1}) = (p^r - 1) \cdot p^\nu \tag{10}$$

for $0 \leq \nu \leq \alpha - 1$. Note that if $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$, then

$$D \cdot \vec{x}_0 \not\equiv \vec{0} \pmod{p} \quad \text{for } p \geq 3$$

and

$$D \cdot (D + I) \cdot \vec{x}_0 \not\equiv \vec{0} \pmod{p} \quad \text{for } p = 2$$

because of (3) and (4), respectively. Therefore (7), (8) and (9) show that

$$A^{(p^r-1) \cdot p^\nu} \cdot \vec{x}_0 \not\equiv \vec{0} \pmod{p^{\nu+2}} \tag{11}$$

for $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$ and $0 \leq \nu \leq \alpha - 2$.

(iv) Now it is proved by induction that

$$\lambda(A, \vec{x}_0, p^{\nu+1}) = (p^r - 1) \cdot p^\nu \tag{12}$$

for any starting vector $\vec{x}_0 \in \mathbb{Z}_p^r$ with $\vec{x}_0 \not\equiv \vec{0} \pmod{p}$ and $0 \leq \nu \leq \alpha - 1$. Obviously, (6) is equivalent to (12) for $\nu = 0$. Now assume that (12) is valid for some ν with $0 \leq \nu \leq \alpha - 2$. Then

$$\lambda(A, \vec{x}_0, p^{\nu+2}) = \mu \cdot (p^r - 1) \cdot p^\nu$$
for some integer $\mu \geq 1$. Since

$$\lambda(A, \bar{z}_0, p^{\nu+2}) \neq (p^r - 1) \cdot p^\nu$$

according to (11), it follows that $\mu > 1$. Remark 1 and (10) imply that $\lambda(A, \bar{z}_0, p^{\nu+2})$ divides $(p^r - 1) \cdot p^\nu+1$ and hence $\mu = p$, which proves the theorem. \qed

Observe that there exist primitive polynomials of degree r over the Galois field $GF(p)$ for every positive integer r and every prime number p. Such a polynomial, and hence a matrix $B \in \mathbb{Z}_p^{r \times r}$ which satisfies the hypothesis of the theorem, can be determined without any effort if p and r are small integers (see, e.g., Knuth [3, p. 28]).

Since the characteristic polynomial of the matrix B is primitive modulo p, it follows that $\det(B) \not\equiv 0 \pmod{p}$ and that $B \cdot \bar{z}_0 \not\equiv \bar{z}_0 \pmod{2}$ for $p = 2$, $r \geq 2$, and $\bar{z}_0 \not\equiv 0 \pmod{2}$. Hence $\det(B+I) \equiv 1 \pmod{2}$ for $p = 2$ and $r \geq 2$. Therefore, the matrix $D \in \mathbb{Z}_p^{r \times r}$, with $D \equiv B \pmod{p^{a-1}}$ satisfies the hypothesis of the theorem if $p \geq 3$ or $r \geq 2$.

Acknowledgment. The authors are indebted to Professor H. Niederreiter for valuable hints given in a discussion on the topic of this paper. They also would like to thank the Deutsche Forschungsgemeinschaft for financial support.

Technische Hochschule Darmstadt
Fachbereich Mathematik
Schloßgartenstr. 7
D-6100 Darmstadt, West Germany
E-mail: xriebd@ddathd21.bitnet