Factoring with cyclotomic polynomials
HTML articles powered by AMS MathViewer
- by Eric Bach and Jeffrey Shallit PDF
- Math. Comp. 52 (1989), 201-219 Request permission
Abstract:
This paper discusses some new integer factoring methods involving cyclotomic polynomials. There are several polynomials $f(X)$ known to have the following property: given a multiple of $f(p)$, we can quickly split any composite number that has p as a prime divisor. For example—taking $f(X)$ to be $X - 1$ —a multiple of $p - 1$ will suffice to easily factor any multiple of p, using an algorithm of Pollard. Other methods (due to Guy, Williams, and Judd) make use of $X + 1$, ${X^2} + 1$, and ${X^2} \pm X + 1$. We show that one may take f to be ${\Phi _k}$, the kth cyclotomic polynomial. In contrast to the ad hoc methods used previously, we give a universal construction based on algebraic number theory that subsumes all the above results. Assuming generalized Riemann hypotheses, the expected time to factor N (given a multiple E of ${\Phi _k}(p)$) is bounded by a polynomial in k, $\log E$, and $\log N$.References
- Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors, perfect numbers and factoring, SIAM J. Comput. 15 (1986), no. 4, 1143–1154. MR 861378, DOI 10.1137/0215083 E. Bach & J. Shallit, A Class of Functions Equivalent to Factoring, Technical Report 84-008, Department of Computer Science, University of Chicago, 1984.
- Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968. MR 0238597
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^{n}\pm 1$, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. $b=2,\,3,\,5,\,6,\,7,\,10,\,11,\,12$ up to high powers. MR 715603
- John D. Dixon, Factorization and primality tests, Amer. Math. Monthly 91 (1984), no. 6, 333–352. MR 750520, DOI 10.2307/2322136 J. W. Cassels & A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1976.
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656
- Richard K. Guy, How to factor a number, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Congressus Numerantium, No. XVI, Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 49–89. MR 0404120 D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematikervereinigung, vol. 4, 1897, pp. 175-546. [This has been reprinted in vol. 1 of Hilbert’s collected works by Chelsea, 1981.]
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409–464. MR 0447191
- J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271–296. MR 553223, DOI 10.1007/BF01390234
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- H. W. Lenstra Jr., Primality testing algorithms (after Adleman, Rumely and Williams), Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin-New York, 1981, pp. 243–257. MR 647500
- H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649–673. MR 916721, DOI 10.2307/1971363
- Daniel A. Marcus, Number fields, Universitext, Springer-Verlag, New York-Heidelberg, 1977. MR 0457396
- Gary L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976), no. 3, 300–317. MR 480295, DOI 10.1016/S0022-0000(76)80043-8
- Eugen Netto, Ueber die Factorenzerlegung der Discriminanten algebraischer Gleichungen, Math. Ann. 24 (1884), no. 4, 579–587 (German). MR 1510293, DOI 10.1007/BF01447450
- J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521–528. MR 354514, DOI 10.1017/s0305004100049252
- C.-P. Schnorr and H. W. Lenstra Jr., A Monte Carlo factoring algorithm with linear storage, Math. Comp. 43 (1984), no. 167, 289–311. MR 744939, DOI 10.1090/S0025-5718-1984-0744939-5
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- H. C. Williams, A generalization of Lehmer’s functions, Acta Arith. 29 (1976), no. 4, 315–341. MR 412091, DOI 10.4064/aa-29-4-315-341
- H. C. Williams, A $p+1$ method of factoring, Math. Comp. 39 (1982), no. 159, 225–234. MR 658227, DOI 10.1090/S0025-5718-1982-0658227-7
- H. C. Williams and J. S. Judd, Determination of the primality of $N$ by using factors of $N^{2}\pm 1$, Math. Comp. 30 (1976), no. 133, 157–172. MR 396390, DOI 10.1090/S0025-5718-1976-0396390-3
- H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comp. 30 (1976), no. 136, 867–886. MR 414473, DOI 10.1090/S0025-5718-1976-0414473-6 B. L. van der Waerden, Modern Algebra, Ungar, New York, 1950. [The relevant material on cyclotomic periods does not appear in the second English edition.]
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- B. F. Wyman, What is a reciprocity law?, Amer. Math. Monthly 79 (1972), 571–586; correction, ibid. 80 (1973), 281. MR 308084, DOI 10.2307/2317083
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 52 (1989), 201-219
- MSC: Primary 11Y05; Secondary 12-04, 68Q40
- DOI: https://doi.org/10.1090/S0025-5718-1989-0947467-1
- MathSciNet review: 947467