## Cosine methods for nonlinear second-order hyperbolic equations

HTML articles powered by AMS MathViewer

- by Laurence A. Bales and Vassilios A. Dougalis PDF
- Math. Comp.
**52**(1989), 299-319 Request permission

## Abstract:

We construct and analyze efficient, high-order accurate methods for approximating the smooth solutions of a class of nonlinear, second-order hyperbolic equations. The methods are based on Galerkin type discretizations in space and on a class of fourth-order accurate two-step schemes in time generated by rational approximations to the cosine. Extrapolation from previous values in the coefficients of the nonlinear terms and use of preconditioned iterative techniques yield schemes whose implementation requires solving a number of linear systems at each time step with the same operator. ${L^2}$ optimal-order error estimates are proved.## References

- Garth A. Baker, Vassilios A. Dougalis, and Ohannes Karakashian,
*On multistep-Galerkin discretizations of semilinear hyperbolic and parabolic equations*, Nonlinear Anal.**4**(1980), no. 3, 579–597. MR**574375**, DOI 10.1016/0362-546X(80)90094-2 - Laurence A. Bales,
*Higher-order single-step fully discrete approximations for nonlinear second-order hyperbolic equations*, Comput. Math. Appl. Part A**12**(1986), no. 4-5, 581–604. Hyperbolic partial differential equations, III. MR**841989** - Laurence A. Bales, Vassilios A. Dougalis, and Steven M. Serbin,
*Cosine methods for second-order hyperbolic equations with time-dependent coefficients*, Math. Comp.**45**(1985), no. 171, 65–89. MR**790645**, DOI 10.1090/S0025-5718-1985-0790645-1 - James H. Bramble and Peter H. Sammon,
*Efficient higher order single step methods for parabolic problems. I*, Math. Comp.**35**(1980), no. 151, 655–677. MR**572848**, DOI 10.1090/S0025-5718-1980-0572848-X
J. H. Bramble & P. H. Sammon, "Efficient higher order single step methods for parabolic problems: Part II," unpublished manuscript.
- Chang Ping Chen and Wolf von Wahl,
*Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung*, J. Reine Angew. Math.**337**(1982), 77–112 (German, with English summary). MR**676043**, DOI 10.1515/crll.1982.337.77 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - M. Crouzeix and V. Thomée,
*The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces*, Math. Comp.**48**(1987), no. 178, 521–532. MR**878688**, DOI 10.1090/S0025-5718-1987-0878688-2 - Constantine M. Dafermos and William J. Hrusa,
*Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics*, Arch. Rational Mech. Anal.**87**(1985), no. 3, 267–292. MR**768069**, DOI 10.1007/BF00250727 - J. E. Dendy Jr.,
*An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems*, SIAM J. Numer. Anal.**12**(1975), no. 4, 541–565. MR**418477**, DOI 10.1137/0712042 - J. E. Dendy Jr.,
*Galerkin’s method for some highly nonlinear problems*, SIAM J. Numer. Anal.**14**(1977), no. 2, 327–347. MR**433914**, DOI 10.1137/0714021 - Jim Douglas Jr., Todd Dupont, and Richard E. Ewing,
*Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem*, SIAM J. Numer. Anal.**16**(1979), no. 3, 503–522. MR**530483**, DOI 10.1137/0716039 - Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces*, Numer. Math.**23**(1974/75), 193–197. MR**383789**, DOI 10.1007/BF01400302 - Richard E. Ewing,
*On efficient time-stepping methods for nonlinear partial differential equations*, Comput. Math. Appl.**6**(1980), no. 1, Issu, 1–13. MR**604081**, DOI 10.1016/0898-1221(80)90055-3 - Charles I. Goldstein,
*Variational crimes and $L^{\infty }$ error estimates in the finite element method*, Math. Comp.**35**(1980), no. 152, 1131–1157. MR**583491**, DOI 10.1090/S0025-5718-1980-0583491-0 - C. I. Goldstein and L. R. Scott,
*Optimal maximum norm error estimates for some finite element methods for treating the Dirichlet problem*, Calcolo**20**(1983), no. 1, 1–52. MR**747006**, DOI 10.1007/BF02575891 - Rolf Rannacher and Ridgway Scott,
*Some optimal error estimates for piecewise linear finite element approximations*, Math. Comp.**38**(1982), no. 158, 437–445. MR**645661**, DOI 10.1090/S0025-5718-1982-0645661-4 - Peter Sammon,
*Fully discrete approximation methods for parabolic problems with nonsmooth initial data*, SIAM J. Numer. Anal.**20**(1983), no. 3, 437–470. MR**701091**, DOI 10.1137/0720031 - A. H. Schatz, V. C. Thomée, and L. B. Wahlbin,
*Maximum norm stability and error estimates in parabolic finite element equations*, Comm. Pure Appl. Math.**33**(1980), no. 3, 265–304. MR**562737**, DOI 10.1002/cpa.3160330305 - A. H. Schatz and L. B. Wahlbin,
*On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces*, Math. Comp.**38**(1982), no. 157, 1–22. MR**637283**, DOI 10.1090/S0025-5718-1982-0637283-6

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp.
**52**(1989), 299-319 - MSC: Primary 65M60
- DOI: https://doi.org/10.1090/S0025-5718-1989-0955747-9
- MathSciNet review: 955747