Nonconforming finite elements for the Stokes problem
HTML articles powered by AMS MathViewer
- by Michel Crouzeix and Richard S. Falk PDF
- Math. Comp. 52 (1989), 437-456 Request permission
Abstract:
A new stability result is obtained for the approximation of the stationary Stokes problem by nonconforming piecewise cubic approximations to the velocities and a discontinuous piecewise quadratic approximation to the pressure. The basic result is that for most reasonable meshes, these elements form a stable pair without the addition of quartic bubble functions (which had previously been added to insure stability).References
- Christine Bernardi and Geneviève Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp. 44 (1985), no. 169, 71–79. MR 771031, DOI 10.1090/S0025-5718-1985-0771031-7
- J. M. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), no. 4, 722–731. MR 708453, DOI 10.1137/0720048
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661 M. Fortin, Calcul Numérique des Écoulements des Fluides de Bingham et des Fluides Newtoniens Incompressibles par la Méthode des Éléments Finis, Thèse Univ. Paris, 1972.
- Michel Fortin, Old and new finite elements for incompressible flows, Internat. J. Numer. Methods Fluids 1 (1981), no. 4, 347–364. MR 633812, DOI 10.1002/fld.1650010406
- M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg. 19 (1983), no. 4, 505–520. MR 702056, DOI 10.1002/nme.1620190405
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for $2$nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391–413. MR 431752, DOI 10.1090/S0025-5718-1977-0431752-8
- L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691, DOI 10.1051/m2an/1985190101111
- Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9–23. MR 725982, DOI 10.1090/S0025-5718-1984-0725982-9
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 52 (1989), 437-456
- MSC: Primary 65N30; Secondary 76-08, 76D07
- DOI: https://doi.org/10.1090/S0025-5718-1989-0958870-8
- MathSciNet review: 958870