## Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data

HTML articles powered by AMS MathViewer

- by James H. Bramble, Joseph E. Pasciak, Peter H. Sammon and Vidar Thomée PDF
- Math. Comp.
**52**(1989), 339-367 Request permission

## Abstract:

Backward difference methods for the discretization of parabolic boundary value problems are considered in this paper. In particular, we analyze the case when the backward difference equations are only solved ’approximately’ by a preconditioned iteration. We provide an analysis which shows that these methods remain stable and accurate if a suitable number of iterations (often independent of the spatial discretization and time step size) are used. Results are provided for the smooth as well as non-smooth initial data cases. Finally, the results of numerical experiments illustrating the algorithms’ performance on model problems are given.## References

- Garth A. Baker, James H. Bramble, and Vidar Thomée,
*Single step Galerkin approximations for parabolic problems*, Math. Comp.**31**(1977), no. 140, 818–847. MR**448947**, DOI 10.1090/S0025-5718-1977-0448947-X - James H. Bramble,
*Discrete methods for parabolic equations with time-dependent coefficients*, Numerical methods for partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 42, Academic Press, New York-London, 1979, pp. 41–52. MR**558215**
J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement," - James H. Bramble and Joseph E. Pasciak,
*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, DOI 10.1090/S0025-5718-1987-0906174-X - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*An iterative method for elliptic problems on regions partitioned into substructures*, Math. Comp.**46**(1986), no. 174, 361–369. MR**829613**, DOI 10.1090/S0025-5718-1986-0829613-0 - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. I*, Math. Comp.**47**(1986), no. 175, 103–134. MR**842125**, DOI 10.1090/S0025-5718-1986-0842125-3 - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. II*, Math. Comp.**49**(1987), no. 179, 1–16. MR**890250**, DOI 10.1090/S0025-5718-1987-0890250-4 - James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. III*, Math. Comp.**51**(1988), no. 184, 415–430. MR**935071**, DOI 10.1090/S0025-5718-1988-0935071-X - James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. IV*, Math. Comp.**53**(1989), no. 187, 1–24. MR**970699**, DOI 10.1090/S0025-5718-1989-0970699-3 - James H. Bramble and Peter H. Sammon,
*Efficient higher order single step methods for parabolic problems. I*, Math. Comp.**35**(1980), no. 151, 655–677. MR**572848**, DOI 10.1090/S0025-5718-1980-0572848-X - J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,
*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**448926**, DOI 10.1137/0714015 - James H. Bramble and Vidar Thomée,
*Discrete time Galerkin methods for a parabolic boundary value problem*, Ann. Mat. Pura Appl. (4)**101**(1974), 115–152. MR**388805**, DOI 10.1007/BF02417101
R. Chandra, - M. Crouzeix and P.-A. Raviart,
*Approximation d’équations d’évolution linéaires par des méthodes multipas*, Étude numérique des grands systèmes (Proc. Sympos., Novosibirsk, 1976) Méthodes Math. Inform., vol. 7, Dunod, Paris, 1978, pp. 133–150 (French). MR**517853** - Colin W. Cryer,
*On the instability of high order backward-difference multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 17–25. MR**311112**, DOI 10.1007/bf01932670 - Jim Douglas Jr., Todd Dupont, and Richard E. Ewing,
*Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem*, SIAM J. Numer. Anal.**16**(1979), no. 3, 503–522. MR**530483**, DOI 10.1137/0716039 - Todd Dupont, Richard P. Kendall, and H. H. Rachford Jr.,
*An approximate factorization procedure for solving self-adjoint elliptic difference equations*, SIAM J. Numer. Anal.**5**(1968), 559–573. MR**235748**, DOI 10.1137/0705045 - C. William Gear,
*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898** - F. B. Hildebrand,
*Introduction to numerical analysis*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956. MR**0075670** - Stephen L. Keeling,
*Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients*, Math. Comp.**52**(1989), no. 186, 561–586. MR**958873**, DOI 10.1090/S0025-5718-1989-0958873-3 - Marie-Noëlle Le Roux,
*Semidiscretization in time for parabolic problems*, Math. Comp.**33**(1979), no. 147, 919–931. MR**528047**, DOI 10.1090/S0025-5718-1979-0528047-2
J. L. Lions & E. Magenes, - Harry Yserentant,
*On the multilevel splitting of finite element spaces*, Numer. Math.**49**(1986), no. 4, 379–412. MR**853662**, DOI 10.1007/BF01389538 - Miloš Zlámal,
*Finite element multistep discretizations of parabolic boundary value problems*, Math. Comp.**29**(1975), 350–359. MR**371105**, DOI 10.1090/S0025-5718-1975-0371105-2

*Comput. Methods Appl. Mech. Engrg.*, v. 67, 1988, pp. 149-159.

*Conjugate Gradient Methods for Partial Differential Equations*, Yale University, Dept. of Comp. Sci. Rep. No. 129, 1978.

*Problèmes aux Limites non Homogènes et Applications*, Dunod, Paris, 1968. W. M. Patterson, 3rd,

*Iterative Methods for the Solution of a Linear Operator Equation in Hilbert Space—A Survey*, Lecture Notes in Math., vol. 394, Springer-Verlag, New York, 1974. V. Thomée,

*Galerkin Finite Element Methods for Parabolic Problems*, Lecture Notes in Math., vol. 1054, Springer-Verlag, New York, 1984.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp.
**52**(1989), 339-367 - MSC: Primary 65N10; Secondary 65N20
- DOI: https://doi.org/10.1090/S0025-5718-1989-0962207-8
- MathSciNet review: 962207