Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation
Authors:
Randall L. Dougherty, Alan S. Edelman and James M. Hyman
Journal:
Math. Comp. 52 (1989), 471-494
MSC:
Primary 41A05; Secondary 65D05
DOI:
https://doi.org/10.1090/S0025-5718-1989-0962209-1
MathSciNet review:
962209
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Hermite polynomials are simple, effective interpolants of discrete data. These interpolants can preserve local positivity, monotonicity, and convexity of the data if we restrict their derivatives to satisfy constraints at the data points. This paper describes the conditions that must be satisfied for cubic and quintic Hermite interpolants to preserve these properties when they exist in the discrete data. We construct algorithms to ensure that these constraints are satisfied and give numerical examples to illustrate the effectiveness of the algorithms on locally smooth and rough data.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062 J. Butland, "A method of interpolating reasonable-shaped curves through any data," Computer Graphics 80 (R.J. Lansdown, ed.), Online Publications, Northwood Hills, Middlesex, 1980, pp. 409-422.
- Carl de Boor and Blair Swartz, Piecewise monotone interpolation, J. Approximation Theory 21 (1977), no. 4, 411–416. MR 481727, DOI https://doi.org/10.1016/0021-9045%2877%2990011-9
- R. E. Carlson and F. N. Fritsch, Monotone piecewise bicubic interpolation, SIAM J. Numer. Anal. 22 (1985), no. 2, 386–400. MR 781326, DOI https://doi.org/10.1137/0722023
- P. Costantini and R. Morandi, An algorithm for computing shape-preserving cubic spline interpolation to data, Calcolo 21 (1984), no. 4, 295–305 (1985). MR 799994, DOI https://doi.org/10.1007/BF02576168
- B. Dimsdale, Convex cubic splines, IBM J. Res. Develop. 22 (1978), no. 2, 168–178. MR 494833, DOI https://doi.org/10.1147/rd.222.0168
- Alan Edelman and Charles A. Micchelli, Admissible slopes for monotone and convex interpolation, Numer. Math. 51 (1987), no. 4, 441–458. MR 902100, DOI https://doi.org/10.1007/BF01397546
- S. C. Eisenstat, K. R. Jackson, and J. W. Lewis, The order of monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 22 (1985), no. 6, 1220–1237. MR 811195, DOI https://doi.org/10.1137/0722075 J. C. Ferguson, Shape Preserving Parametric Cubic Curve Interpolation, Ph. D. thesis, University of New Mexico, 1984. J. C. Ferguson & K. Miller, Characterization of Shape in a Class of Third Degree Algebraic Curves, TRW report 5322-3-5, 1969. F. N. Fritsch, Use of the Bernstein Form to Derive Sufficient Conditions for Shape Preserving Piecewise Polynomial Interpolation, Lawrence Livermore National Laboratory report UCRL-91392, March 1984.
- F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise cubic interpolants, SIAM J. Sci. Statist. Comput. 5 (1984), no. 2, 300–304. MR 740848, DOI https://doi.org/10.1137/0905021
- F. N. Fritsch and R. E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 17 (1980), no. 2, 238–246. MR 567271, DOI https://doi.org/10.1137/0717021
- James M. Hyman, Accurate monotonicity preserving cubic interpolation, SIAM J. Sci. Statist. Comput. 4 (1983), no. 4, 645–654. MR 725659, DOI https://doi.org/10.1137/0904045 J. M. Hyman, Accurate Convexity-Preserving Cubic Interpolation, informal report, Los Alamos Scientific Laboratory document, LA-UR-80-3700, Los Alamos, NM, November 1980.
- James M. Hyman and Bernard Larrouturou, The numerical differentiation of discrete functions using polynomial interpolation methods, Appl. Math. Comput. 10/11 (1982), 487–506. Numerical grid generation (Nashville, Tenn., 1982). MR 675799, DOI https://doi.org/10.1016/0096-3003%2882%2990204-1
- David F. McAllister, Eli Passow, and John A. Roulier, Algorithms for computing shape preserving spline interpolations to data, Math. Comp. 31 (1977), no. 139, 717–725. MR 448805, DOI https://doi.org/10.1090/S0025-5718-1977-0448805-0
- David F. McAllister and John A. Roulier, An algorithm for computing a shape-preserving osculatory quadratic spline, ACM Trans. Math. Software 7 (1981), no. 3, 331–347. MR 630439, DOI https://doi.org/10.1145/355958.355964
- David F. McAllister and John A. Roulier, Interpolation by convex quadratic splines, Math. Comp. 32 (1978), no. 144, 1154–1162. MR 481734, DOI https://doi.org/10.1090/S0025-5718-1978-0481734-6
- Holger Mettke, Convex cubic HERMITE-spline interpolation, J. Comput. Appl. Math. 9 (1983), no. 3, 205–211. MR 715537, DOI https://doi.org/10.1016/0377-0427%2883%2990013-4
- Edward Neuman, Convex interpolating splines of arbitrary degree. II, BIT 22 (1982), no. 3, 331–338. MR 675667, DOI https://doi.org/10.1007/BF01934446
- Eli Passow and John A. Roulier, Monotone and convex spline interpolation, SIAM J. Numer. Anal. 14 (1977), no. 5, 904–909. MR 470566, DOI https://doi.org/10.1137/0714060
Retrieve articles in Mathematics of Computation with MSC: 41A05, 65D05
Retrieve articles in all journals with MSC: 41A05, 65D05
Additional Information
Keywords:
Approximation theory,
convexity,
interpolation,
monotonicity,
shape preservation,
spline
Article copyright:
© Copyright 1989
American Mathematical Society