Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems
HTML articles powered by AMS MathViewer
- by I. Babuška and J. E. Osborn PDF
- Math. Comp. 52 (1989), 275-297 Request permission
Corrigendum: Math. Comp. 63 (1994), 831-832.
Corrigendum: Math. Comp. 63 (1994), 831-832.
Abstract:
Refined estimates for finite element or, more generally, Galerkin approximations of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented. More specifically, refined results on the asymptotic behavior of the eigenvalue and eigenvector errors are proved. Both simple and multiple eigenvalues are treated.References
- Jean-Pierre Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 599–637. MR 233068
- I. Babuška, B. Q. Guo, and J. E. Osborn, Regularity and numerical solution of eigenvalue problems with piecewise analytic data, SIAM J. Numer. Anal. 26 (1989), no. 6, 1534–1560. MR 1025104, DOI 10.1137/0726090
- I. Babuška and J. E. Osborn, Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues, SIAM J. Numer. Anal. 24 (1987), no. 6, 1249–1276. MR 917451, DOI 10.1137/0724082
- I. Babuška and J. Osborn, Eigenvalue problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR 1115240
- Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718, DOI 10.1090/mmono/017
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI 10.1090/S0025-5718-1973-0366029-9
- Françoise Chatelin, La méthode de Galerkin. Ordre de convergence des éléments propres, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1213–1215 (French). MR 343592
- Françoise Chatelin, Spectral approximation of linear operators, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With a foreword by P. Henrici; With solutions to exercises by Mario Ahués. MR 716134
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- L. A. Oganesjan and L. A. Ruhovec, An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat i Mat. Fiz. 9 (1969), 1102–1120 (Russian). MR 295599
- J. G. Pierce and R. S. Varga, Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems. II. Improved error bounds for eigenfunctions, Numer. Math. 19 (1972), 155–169. MR 323133, DOI 10.1007/BF01402526
- H. F. Weinberger, Error bounds in the Rayleigh-Ritz approximation of eigenvectors, J. Res. Nat. Bur. Standards Sect. B 64B (1960), 217–225. MR 129121, DOI 10.6028/jres.064B.023
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 52 (1989), 275-297
- MSC: Primary 65N30; Secondary 65N25
- DOI: https://doi.org/10.1090/S0025-5718-1989-0962210-8
- MathSciNet review: 962210