Convergence of a random particle method to solutions of the Kolmogorov equation $u_ t=\nu u_ {xx}+u(1-u)$
HTML articles powered by AMS MathViewer
- by Elbridge Gerry Puckett PDF
- Math. Comp. 52 (1989), 615-645 Request permission
Abstract:
We study a random particle method for solving the reaction-diffusion equation ${u_t} = \nu {u_{xx}} + f(u)$ which is a one-dimensional analogue of the random vortex method. It is a fractional step method in which ${u_t} = \nu {u_{xx}}$ is solved by random walking the particles while ${u_t} = f(u)$ is solved with a numerical ordinary differential equation solver such as Euler’s method. We prove that the method converges when $f(u) = u(1 - u)$, i.e. the Kolmogorov equation, and that when the time step $\Delta t$ is $O({\sqrt [4]{N}^{ - 1}})$ the rate of convergence is like $\ln N \cdot {\sqrt [4]{N}^{ - 1}}$ where N denotes the number of particles. Furthermore, we show that this rate of convergence is uniform as the diffusion coefficient $\nu$ tends to 0. Thus, travelling waves with arbitrarily steep wavefronts may be modeled without an increase in the computational cost. We also present the results of numerical experiments including the use of second-order time discretization and second-order operator splitting and use these results to estimate the expected value and standard deviation of the error.References
- Christopher Anderson and Claude Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), no. 3, 413–440. MR 787568, DOI 10.1137/0722025
- J. Thomas Beale and Andrew Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp. 37 (1981), no. 156, 243–259. MR 628693, DOI 10.1090/S0025-5718-1981-0628693-0
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- Maury Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc. 44 (1983), no. 285, iv+190. MR 705746, DOI 10.1090/memo/0285 Y. Brenier, A Particle Method for One Dimensional Non-Linear Reaction Advection Diffusion Equations, Technical Report No. 351, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 1983.
- Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785–796. MR 395483, DOI 10.1017/S0022112073002016 A. J. Chorin, "Vortex sheet approximation of boundary layers," J. Comput. Phys., v. 27, 1978, pp. 428-442.
- Alexandre Joel Chorin, Numerical methods for use in combustion modeling, Computing methods in applied sciences and engineering (Proc. Fourth Internat. Sympos., Versailles, 1979) North-Holland, Amsterdam-New York, 1980, pp. 229–236. MR 584038
- Kai Lai Chung, A course in probability theory, 2nd ed., Probability and Mathematical Statistics, Vol. 21, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0346858 S. D. Conte & C. de Boor, Elementary Numerical Analysis, 3rd ed., McGraw-Hill, New York, 1980. G. H. Cottet, Méthodes Particulaires pour l’Equation d’Euler dans le Plan, Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris, 1982. G. H. Cottet & S. Gallic, A Particle Method to Solve Transport-Diffusion Equations, Part I: The Linear Case, Rapport Interne No: 115, Centre de Mathématiques Appliquées, Ecole Polytechnique, Paris, 1984.
- Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics. MR 0599578, DOI 10.1515/9780691213033
- Ahmed F. Ghoniem and Frederick S. Sherman, Grid-free simulation of diffusion using random walk methods, J. Comput. Phys. 61 (1985), no. 1, 1–37. MR 811559, DOI 10.1016/0021-9991(85)90058-0
- Jonathan Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), no. 2, 189–220. MR 872384, DOI 10.1002/cpa.3160400204
- Claude Greengard, Convergence of the vortex filament method, Math. Comp. 47 (1986), no. 176, 387–398. MR 856692, DOI 10.1090/S0025-5718-1986-0856692-7 O. Hald, Private communication.
- Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, DOI 10.1090/S0025-5718-1978-0492039-1
- Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, DOI 10.1090/S0025-5718-1978-0492039-1
- Ole H. Hald, Convergence of random methods for a reaction-diffusion equation, SIAM J. Sci. Statist. Comput. 2 (1981), no. 1, 85–94. MR 618634, DOI 10.1137/0902007
- Ole H. Hald, Convergence of a random method with creation of vorticity, SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1373–1386. MR 857800, DOI 10.1137/0907091
- Ole H. Hald, Convergence of vortex methods for Euler’s equations. III, SIAM J. Numer. Anal. 24 (1987), no. 3, 538–582. MR 888750, DOI 10.1137/0724039
- Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 144363, DOI 10.1080/01621459.1963.10500830 M. Loève, Probability Theory, Springer-Verlag, Berlin and New York, 1977. D. G. Long, Convergence of the Random Vortex Method in One and Two Dimensions, Ph.D. Thesis, Univ. of California, Berkeley, 1986.
- Elbridge Gerry Puckett, A study of the vortex sheet method and its rate of convergence, SIAM J. Sci. Statist. Comput. 10 (1989), no. 2, 298–327. MR 982225, DOI 10.1137/0910020 P. A. Raviart, "An analysis of particle methods," CIME Course on Numerical Methods in Fluid Dynamics, Publications du Laboratoire d’Analyse numérique, Université Pierre et Marie Curie, Paris, 1983.
- P.-A. Raviart, Particle approximation of linear hyperbolic equations of the first order, Numerical analysis (Dundee, 1983) Lecture Notes in Math., vol. 1066, Springer, Berlin, 1984, pp. 142–158. MR 760461, DOI 10.1007/BFb0099522
- Stephen Roberts, Accuracy of the random vortex method for a problem with nonsmooth initial conditions, J. Comput. Phys. 58 (1985), no. 1, 29–43. MR 789554, DOI 10.1016/0021-9991(85)90154-8
- Stephen Roberts, Convergence of a random walk method for the Burgers equation, Math. Comp. 52 (1989), no. 186, 647–673. MR 955753, DOI 10.1090/S0025-5718-1989-0955753-4
- Gerald Rosen, Brownian-motion correspondence method for obtaining approximate solutions to nonlinear reaction-diffusion equations, Phys. Rev. Lett. 53 (1984), no. 4, 307–310. MR 766364, DOI 10.1103/PhysRevLett.53.307
- Arthur S. Sherman and Charles S. Peskin, A Monte Carlo method for scalar reaction diffusion equations, SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1360–1372. MR 857799, DOI 10.1137/0907090
- Arthur S. Sherman and Charles S. Peskin, Solving the Hodgkin-Huxley equations by a random walk method, SIAM J. Sci. Statist. Comput. 9 (1988), no. 1, 170–190. MR 922871, DOI 10.1137/0909012
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146, DOI 10.1007/978-1-4684-0152-3
- Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506–517. MR 235754, DOI 10.1137/0705041
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 52 (1989), 615-645
- MSC: Primary 65C05; Secondary 65M99
- DOI: https://doi.org/10.1090/S0025-5718-1989-0964006-X
- MathSciNet review: 964006