The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers
HTML articles powered by AMS MathViewer
- by Lothar Afflerbach and Rainer Weilbächer PDF
- Math. Comp. 53 (1989), 343-354 Request permission
Abstract:
Up to now, the rectangle discrepancy of linear congruential pseudorandom number generators could be exactly calculated only in some simple cases for a small number of generated points. Here an algorithm for the exact determination of the two-dimensional rectangle discrepancy is presented which is practicable for large generators and requires less computation time. The algorithm is based on special properties of linear congruential generators.References
-
L. Afflerbach, Lineare Kongruenz-Generatoren zur Erzeugung von Pseudo-Zufallszahlen und ihre Gitterstruktur, Dissertation, Technische Hochschule Darmstadt, 1983.
- W. A. Beyer, Lattice structure and reduced bases of random vectors generated by linear recurrences, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 361–370. MR 0351032
- R. R. Coveyou and R. D. Macpherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach. 14 (1967), 100–119. MR 221727, DOI 10.1145/321371.321379
- U. Dieter, Pseudo-random numbers. The exact distribution of pairs, Math. Comp. 25 (1971), 855–883. MR 298727, DOI 10.1090/S0025-5718-1971-0298727-8 U. Dieter & J. H. Ahrens, Uniform Random Numbers, Inst. f. Math. Stat., Technische Hochschule Graz, 1974.
- Edmund Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140–151 (German). MR 143329, DOI 10.1007/BF01387711
- Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR 0378456
- George Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 25–28. MR 235695, DOI 10.1073/pnas.61.1.25
- George Marsaglia, The structure of linear congruential sequences, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 249–285. MR 0411115
- Harald Niederreiter, On the distribution of pseudo-random numbers generated by the linear congruential method. II, Math. Comp. 28 (1974), 1117–1132. MR 457391, DOI 10.1090/S0025-5718-1974-0457391-8
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI 10.1090/S0002-9904-1978-14532-7
- B. D. Ripley, The lattice structure of pseudorandom number generators, Proc. Roy. Soc. London Ser. A 389 (1983), no. 1796, 197–204. MR 719645
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 343-354
- MSC: Primary 65C10; Secondary 11K45
- DOI: https://doi.org/10.1090/S0025-5718-1989-0968147-2
- MathSciNet review: 968147