A new lower bound for odd perfect numbers
HTML articles powered by AMS MathViewer
- by Richard P. Brent and Graeme L. Cohen PDF
- Math. Comp. 53 (1989), 431-437 Request permission
Abstract:
We describe an algorithm for proving that there is no odd perfect number less than a given bound K (or finding such a number if one exists). A program implementing the algorithm has been run successfully with $K = {10^{160}}$, with an elliptic curve method used for the vast number of factorizations required.References
- Walter E. Beck and Rudolph M. Najar, A lower bound for odd triperfects, Math. Comp. 38 (1982), no. 157, 249–251. MR 637303, DOI 10.1090/S0025-5718-1982-0637303-9 R. P. Brent, "Some integer factorization algorithms using elliptic curves," Australian Computer Science Communications, v. 8, 1986, pp. 149-163. R. P. Brent, G. L. Cohen & H. J. J. te Riele, An Improved Technique for Lower Bounds for Odd Perfect Numbers, Report TR-CS-88-08, Computer Sciences Laboratory, Australian National University, August 1988.
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^{n}\pm 1$, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. $b=2,\,3,\,5,\,6,\,7,\,10,\,11,\,12$ up to high powers. MR 715603 M. Buxton & S. Elmore, "An extension of lower bounds for odd perfect numbers," Notices Amer. Math. Soc., v. 23, 1976, p. A-55. M. Buxton & B. Stubblefield, "On odd perfect numbers," Notices Amer. Math. Soc., v. 22, 1975, p. A-543.
- Graeme L. Cohen and Peter Hagis Jr., Results concerning odd multiperfect numbers, Bull. Malaysian Math. Soc. (2) 8 (1985), no. 1, 23–26. MR 810051
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Peter Hagis Jr., A lower bound for the set of odd perfect numbers, Math. Comp. 27 (1973), 951–953. MR 325507, DOI 10.1090/S0025-5718-1973-0325507-9
- Hans-Joachim Kanold, Über mehrfach vollkommene Zahlen. II, J. Reine Angew. Math. 197 (1957), 82–96 (German). MR 84514, DOI 10.1515/crll.1957.197.82 T. Nagell, Introduction to Number Theory, Chelsea, New York, 1981. B. M. Stewart, Math. Rev., 81m:10011.
- Beauregard Stubblefield, Lower bounds for odd perfect numbers (beyond the googol), Black mathematicians and their works, Dorrance & Co., Ardmore, Pa., 1980, pp. 211–222 (1 plate). MR 573929
- Bryant Tuckerman, A search procedure and lower bound for odd perfect numbers, Math. Comp. 27 (1973), 943–949. MR 325506, DOI 10.1090/S0025-5718-1973-0325506-7
- Stan Wagon, The evidence: perfect numbers, Math. Intelligencer 7 (1985), no. 2, 66–68. MR 784945, DOI 10.1007/BF03024179
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 431-437
- MSC: Primary 11A25; Secondary 11Y05, 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-1989-0968150-2
- MathSciNet review: 968150