Some pseudoprimes and related numbers having special forms
Author:
Wayne L. McDaniel
Journal:
Math. Comp. 53 (1989), 407409
MSC:
Primary 11A07; Secondary 11Y99
DOI:
https://doi.org/10.1090/S00255718198909681526
MathSciNet review:
968152
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: We give an example of a pseudoprime which is itself of the form ${2^n}  2$, answering a question posed by A. Rotkiewicz, show that Lehmer’s example of an even pseudoprime having three prime factors is not unique, and answer a question of Benkoski concerning the solutions of ${2^{n  2}} \equiv 1\;\pmod n$.

S. J. Benkoski, Review of "On the congruence ${2^{n  k}} \equiv 1\;\pmod n$." MR 87e:11005.
 John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^{n}\pm 1$, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. $b=2,\,3,\,5,\,6,\,7,\,10,\,11,\,12$ up to high powers. MR 715603 L. E. Dickson, History of the Theory of Numbers, Chelsea, New York, 1952.
 P. Erdös, On almost primes, Amer. Math. Monthly 57 (1950), 404–407. MR 36259, DOI https://doi.org/10.2307/2307640 P. Erdös & R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographies de L’Enseignement Mathématique, No. 28, Genève, 1980.
 Péter Kiss and Bui Minh Phong, On a problem of A. Rotkiewicz, Math. Comp. 48 (1987), no. 178, 751–755. MR 878704, DOI https://doi.org/10.1090/S00255718198708787048
 Wayne L. McDaniel, The generalized pseudoprime congruence $a^{nk}\equiv b^{nk}\;({\rm mod}\,n)$, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 3, 143–147. MR 888647
 Wayne L. McDaniel, The existence of solutions of the generalized pseudoprime congruence $a^{f(n)}\equiv b^{f(n)}\pmod n$, Colloq. Math. 59 (1990), no. 2, 177–190. MR 1090649, DOI https://doi.org/10.4064/cm592177190
 A. Rotkiewicz, Pseudoprime numbers and their generalizations, Student Association of the Faculty of Sciencies, University of Novi Sad, Novi Sad, 1972. MR 0330034
 A. Rotkiewicz, On the congruence $2^{n2}\equiv 1({\rm mod\,}n)$, Math. Comp. 43 (1984), no. 167, 271–272. MR 744937, DOI https://doi.org/10.1090/S00255718198407449371
 MokKong Shen, On the congruence $2^{nk}\equiv 1\;({\rm mod}\,n)$, Math. Comp. 46 (1986), no. 174, 715–716. MR 829641, DOI https://doi.org/10.1090/S00255718198608296415 M. Zhang (unpublished result).
Retrieve articles in Mathematics of Computation with MSC: 11A07, 11Y99
Retrieve articles in all journals with MSC: 11A07, 11Y99
Additional Information
Keywords:
Pseudoprime
Article copyright:
© Copyright 1989
American Mathematical Society