Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Numerical approximation of a wave equation with unilateral constraints
HTML articles powered by AMS MathViewer

by Michelle Schatzman and Michel Bercovier PDF
Math. Comp. 53 (1989), 55-79 Request permission


The system ${u_{tt}} - {u_{xx}} \backepsilon f$, $x \in (0,L) \times (0,T)$, with initial data $u(x,0) = {u_0}(x)$, ${u_t}(x,0) = {u_1}(x)$ almost everywhere on (0, L) and boundary conditions $u(0,t) = 0$, for all $t \geq 0$, and the unilateral condition \[ {u_x}(L,t) \geq 0,u(L,t) \geq {k_0},(u(L,t) - {k_0}){u_x}(L,t) = 0\] models the longitudinal vibrations of a rod, whose motion is limited by a rigid obstacle at one end. A new variational formulation is given; existence and uniqueness are proved. Finite elements and finite difference schemes are given, and their convergence is proved. Numerical experiments are reported; the characteristic schemes perform better in terms of accuracy, and the subcharacteristic schemes look better.
    L. Amerio, "Su un problema di vincoli unilaterali per l’equazione non omogenea della corda vibrante," I.A.C. (Istituto per le Applicazioni del Calcolo "Mauro Picone") Pubbl. Ser. D., v. 109, 1976, pp. 3-11.
  • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
  • Claudio Citrini, The energy theorem in the impact of a string vibrating against a pointshaped obstacle, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 62 (1977), no. 2, 143–149 (English, with Italian summary). MR 499746
  • C. Citrini, "Risultati tipici sul problema della corda vibrante con ostacolo puntiforme," I.A.C. (Istituto per le Applicazioni del Calcolo "Mauro Picone") Pubbl. Ser. III, v. 134, 1978, pp. 1-24.
  • Michel Crouzeix and Alain L. Mignot, Analyse numérique des équations différentielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1984 (French). MR 762089
  • G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary, J. Differential Equations 53 (1984), no. 3, 309–361. MR 752204, DOI 10.1016/0022-0396(84)90030-5
  • J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
  • R. S. Phillips, The adjoint semi-group, Pacific J. Math. 5 (1955), 269–283. MR 70976
  • R. T. Rockafellar, Integrals which are convex functionals. II, Pacific J. Math. 39 (1971), 439–469. MR 310612
  • Michelle Schatzman, A class of nonlinear differential equations of second order in time, Nonlinear Anal. 2 (1978), no. 3, 355–373. MR 512664, DOI 10.1016/0362-546X(78)90022-6
  • Michelle Schatzman, Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: la corde vibrante avec obstacle ponctuel, J. Differential Equations 36 (1980), no. 2, 295–334 (French, with English summary). MR 574341, DOI 10.1016/0022-0396(80)90068-6
  • M. Schatzman & M. Bercovier, On the Numerical Approximation of a Vibration Problem with Unilateral Constraints, Rapport interne, Centre de Mathématiques Appliquées, Ecole Polytechnique, vol. 124, 1985.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65M25, 65N30
  • Retrieve articles in all journals with MSC: 65M25, 65N30
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Math. Comp. 53 (1989), 55-79
  • MSC: Primary 65M25; Secondary 65N30
  • DOI:
  • MathSciNet review: 969491