Error estimates for semidiscrete finite element methods for parabolic integro-differential equations
Authors:
Vidar Thomée and Nai Ying Zhang
Journal:
Math. Comp. 53 (1989), 121-139
MSC:
Primary 65R20; Secondary 65M60
DOI:
https://doi.org/10.1090/S0025-5718-1989-0969493-9
MathSciNet review:
969493
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The purpose of this paper is to attempt to carry over known results for spatially discrete finite element methods for linear parabolic equations to integro-differential equations of parabolic type with an integral kernel consisting of a partial differential operator of order $\beta \leq 2$. It is shown first that this is possible without restrictions when the exact solution is smooth. In the case of a homogeneous equation with nonsmooth initial data $v,v \in {L_2}$, optimal $O({h^r})$ convergence for positive time is possible in general only if $r \leq 4 - \beta$. This depends on the fact that the exact solution is then only in ${H^{4 - \beta }}$.
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI https://doi.org/10.1137/0714015 J. R. Cannon & Y. Lin, "A priori ${L^2}$ error estimates for Galerkin methods for nonlinear parabolic integro-differential equations," Manuscript, 1987.
- Elizabeth G. Yanik and Graeme Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal. 12 (1988), no. 8, 785–809. MR 954953, DOI https://doi.org/10.1016/0362-546X%2888%2990039-9
- Marie-Noëlle Le Roux and Vidar Thomée, Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal. 26 (1989), no. 6, 1291–1309. MR 1025089, DOI https://doi.org/10.1137/0726075
- I. H. Sloan and V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), no. 5, 1052–1061. MR 859017, DOI https://doi.org/10.1137/0723073
- Vidar Thomée, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Comp. 34 (1980), no. 149, 93–113. MR 551292, DOI https://doi.org/10.1090/S0025-5718-1980-0551292-5
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI https://doi.org/10.1137/0710062
Retrieve articles in Mathematics of Computation with MSC: 65R20, 65M60
Retrieve articles in all journals with MSC: 65R20, 65M60
Additional Information
Keywords:
Integro-differential equation,
parabolic,
nonsmooth data,
regularity estimates,
finite elements,
Galerkin,
semidiscrete,
error estimates
Article copyright:
© Copyright 1989
American Mathematical Society