On the computation of unit groups and class groups of totally real quartic fields
Authors:
J. Buchmann, M. Pohst and J. von Schmettow
Journal:
Math. Comp. 53 (1989), 387-397
MSC:
Primary 11Y40; Secondary 11R16, 11R27, 11R80
DOI:
https://doi.org/10.1090/S0025-5718-1989-0970698-1
MathSciNet review:
970698
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we describe the computation of a system of fundamental units and of the class group for each totally real quartic field $\mathcal {F}$ of discriminant less than ${10^6}$. Generating equations, integral bases, and the Galois groups for all those fields were recently given by Buchmann and Ford.
- Johannes Buchmann, On the computation of units and class numbers by a generalization of Lagrange’s algorithm, J. Number Theory 26 (1987), no. 1, 8–30. MR 883530, DOI https://doi.org/10.1016/0022-314X%2887%2990092-8
- Johannes Buchmann, On the period length of the generalized Lagrange algorithm, J. Number Theory 26 (1987), no. 1, 31–37. MR 883531, DOI https://doi.org/10.1016/0022-314X%2887%2990093-X
- Johannes Buchmann and David Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), no. 185, 161–174. MR 946599, DOI https://doi.org/10.1090/S0025-5718-1989-0946599-1
- H. Cohen and J. Martinet, Class groups of number fields: numerical heuristics, Math. Comp. 48 (1987), no. 177, 123–137. MR 866103, DOI https://doi.org/10.1090/S0025-5718-1987-0866103-4
- P. D. Domich, R. Kannan, and L. E. Trotter Jr., Hermite normal form computation using modulo determinant arithmetic, Math. Oper. Res. 12 (1987), no. 1, 50–59. MR 882842, DOI https://doi.org/10.1287/moor.12.1.50
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI https://doi.org/10.1090/S0025-5718-1985-0777278-8
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR 633878
- P. Noordzij, Über das Produkt von vier reellen, homogenen, linearen Formen, Monatsh. Math. 71 (1967), 436–445 (German). MR 230686, DOI https://doi.org/10.1007/BF01295135
- Michael Pohst and Hans Zassenhaus, Über die Berechnung von Klassenzahlen und Klassengruppen algebraischer Zahlkörper, J. Reine Angew. Math. 361 (1985), 50–72 (German). MR 807252, DOI https://doi.org/10.1515/crll.1985.361.50
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013
- Robert Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compositio Math. 10 (1952), 245–285 (German). MR 54641 J. Graf V. Schmettow, Über die Berechnung von Klassengruppen algebraischer Zahlkörper, Diplomarbeit, Düsseldorf, 1987.
Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R16, 11R27, 11R80
Retrieve articles in all journals with MSC: 11Y40, 11R16, 11R27, 11R80
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society