The construction of preconditioners for elliptic problems by substructuring. IV
HTML articles powered by AMS MathViewer
- by James H. Bramble, Joseph E. Pasciak and Alfred H. Schatz PDF
- Math. Comp. 53 (1989), 1-24 Request permission
Abstract:
We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three-dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.References
- G. P. Astrahancev, The method of fictitious domains for a second order elliptic equation with natural boundary conditions, Ž. Vyčisl. Mat i Mat. Fiz. 18 (1978), no. 1, 118–125, 269 (Russian). MR 468228
- Petter E. Bjørstad and Olof B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), no. 6, 1097–1120. MR 865945, DOI 10.1137/0723075
- J. H. Bramble, A second order finite difference analog of the first biharmonic boundary value problem, Numer. Math. 9 (1966), 236–249. MR 205478, DOI 10.1007/BF02162087 J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement," Comput. Methods Appl. Mech. Engrg., v. 67, 1988, pp. 149-159.
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), no. 174, 361–369. MR 829613, DOI 10.1090/S0025-5718-1986-0829613-0
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. II, Math. Comp. 49 (1987), no. 179, 1–16. MR 890250, DOI 10.1090/S0025-5718-1987-0890250-4
- James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz, The construction of preconditioners for elliptic problems by substructuring. III, Math. Comp. 51 (1988), no. 184, 415–430. MR 935071, DOI 10.1090/S0025-5718-1988-0935071-X Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395-426. G. H. Golub & D. Meyers, The Use of Preconditioning Over Irregular Regions, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, France, 1983. W. D. Gropp & D. E. Keyes, A Comparison on Domain Decomposition Techniques for Elliptic Partial Differential Equations and the Parallel Implementation, Research Report YALEU/DCS/RR-448, 1985. G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1952.
- S. G. Kreĭn and Ju. I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89–168 (Russian). MR 0193499
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
- S. McCormick and J. Thomas, The fast adaptive composite grid (FAC) method for elliptic equations, Math. Comp. 46 (1986), no. 174, 439–456. MR 829618, DOI 10.1090/S0025-5718-1986-0829618-X J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 1-24
- MSC: Primary 65N30; Secondary 65F35
- DOI: https://doi.org/10.1090/S0025-5718-1989-0970699-3
- MathSciNet review: 970699