The construction of preconditioners for elliptic problems by substructuring. IV

Authors:
James H. Bramble, Joseph E. Pasciak and Alfred H. Schatz

Journal:
Math. Comp. **53** (1989), 1-24

MSC:
Primary 65N30; Secondary 65F35

DOI:
https://doi.org/10.1090/S0025-5718-1989-0970699-3

MathSciNet review:
970699

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three-dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.

- G. P. Astrahancev,
*The method of fictitious domains for a second order elliptic equation with natural boundary conditions*, Ž. Vyčisl. Mat i Mat. Fiz.**18**(1978), no. 1, 118–125, 269 (Russian). MR**468228** - Petter E. Bjørstad and Olof B. Widlund,
*Iterative methods for the solution of elliptic problems on regions partitioned into substructures*, SIAM J. Numer. Anal.**23**(1986), no. 6, 1097–1120. MR**865945**, DOI https://doi.org/10.1137/0723075 - J. H. Bramble,
*A second order finite difference analog of the first biharmonic boundary value problem*, Numer. Math.**9**(1966), 236–249. MR**205478**, DOI https://doi.org/10.1007/BF02162087
J. H. Bramble, R. E. Ewing, J. E. Pasciak & A. H. Schatz, "A preconditioning technique for the efficient solution of problems with local grid refinement," - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*An iterative method for elliptic problems on regions partitioned into substructures*, Math. Comp.**46**(1986), no. 174, 361–369. MR**829613**, DOI https://doi.org/10.1090/S0025-5718-1986-0829613-0 - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. I*, Math. Comp.**47**(1986), no. 175, 103–134. MR**842125**, DOI https://doi.org/10.1090/S0025-5718-1986-0842125-3 - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. II*, Math. Comp.**49**(1987), no. 179, 1–16. MR**890250**, DOI https://doi.org/10.1090/S0025-5718-1987-0890250-4 - James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. III*, Math. Comp.**51**(1988), no. 184, 415–430. MR**935071**, DOI https://doi.org/10.1090/S0025-5718-1988-0935071-X
Q. V. Dihn, R. Glowinski & J. Périaux, "Solving elliptic problems by domain decomposition methods," in - S. G. Kreĭn and Ju. I. Petunin,
*Scales of Banach spaces*, Uspehi Mat. Nauk**21**(1966), no. 2 (128), 89–168 (Russian). MR**0193499** - J.-L. Lions and E. Magenes,
*Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR**0247243** - S. McCormick and J. Thomas,
*The fast adaptive composite grid (FAC) method for elliptic equations*, Math. Comp.**46**(1986), no. 174, 439–456. MR**829618**, DOI https://doi.org/10.1090/S0025-5718-1986-0829618-X
J. Nečas, - Richard S. Varga,
*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

*Comput. Methods Appl. Mech. Engrg.*, v. 67, 1988, pp. 149-159.

*Elliptic Problem Solvers II*(G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984, pp. 395-426. G. H. Golub & D. Meyers,

*The Use of Preconditioning Over Irregular Regions*, Proc. 6th Internat. Conf. Comput. Meth. Sci. and Engrg., Versailles, France, 1983. W. D. Gropp & D. E. Keyes,

*A Comparison on Domain Decomposition Techniques for Elliptic Partial Differential Equations and the Parallel Implementation*, Research Report YALEU/DCS/RR-448, 1985. G. H. Hardy, J. E. Littlewood & G. Pólya,

*Inequalities*, Cambridge Univ. Press, New York, 1952.

*Les Méthodes Directes en Théorie des Équations Elliptiques*, Academia, Prague, 1967.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65F35

Retrieve articles in all journals with MSC: 65N30, 65F35

Additional Information

Article copyright:
© Copyright 1989
American Mathematical Society