## $n$-clusters for $1<n<7$

HTML articles powered by AMS MathViewer

- by Landon Curt Noll and David I. Bell PDF
- Math. Comp.
**53**(1989), 439-444 Request permission

## Abstract:

An*n*-cluster is a set of

*n*lattice points in ${{\mathbf {R}}^2}$ with no 3 points collinear, no 4 points concyclic, and where all mutual distances are nonzero integers. The initial discoveries of

*n*-clusters for $1 < n < 7$ are reported. A progress report on small 6-clusters and the search for a 7-cluster is described. A question on the impact of the lattice point restriction is raised, and the definition of

*n*-cluster is generalized to ${{\mathbf {R}}^m}$.

## References

- Norman H. Anning and Paul Erdös,
*Integral distances*, Bull. Amer. Math. Soc.**51**(1945), 598–600. MR**13511**, DOI 10.1090/S0002-9904-1945-08407-9 - A. S. Besicovitch,
*Rational polygons*, Mathematika**6**(1959), 98. MR**110682**, DOI 10.1112/S0025579300001984 - D. E. Daykin,
*Rational polygons*, Mathematika**10**(1963), 125–131. MR**169820**, DOI 10.1112/S0025579300004046 - Paul Erdös,
*Integral distances*, Bull. Amer. Math. Soc.**51**(1945), 996. MR**13512**, DOI 10.1090/S0002-9904-1945-08490-0 - Richard K. Guy,
*Unsolved problems in number theory*, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR**656313**
William Kalsow, Private communication.
Arnfried Kemnitz, Private communication.
Kevin J. Romero, Private communication.
- T. K. Sheng,
*Rational polygons*, J. Austral. Math. Soc.**6**(1966), 452–459. MR**0209235**, DOI 10.1017/S1446788700004912 - T. K. Sheng and D. E. Daykin,
*On approximating polygons by rational polygons*, Math. Mag.**39**(1966), 299–300. MR**207648**, DOI 10.2307/2689020

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp.
**53**(1989), 439-444 - MSC: Primary 52A37
- DOI: https://doi.org/10.1090/S0025-5718-1989-0970702-0
- MathSciNet review: 970702