$n$-clusters for $1<n<7$
Authors:
Landon Curt Noll and David I. Bell
Journal:
Math. Comp. 53 (1989), 439-444
MSC:
Primary 52A37
DOI:
https://doi.org/10.1090/S0025-5718-1989-0970702-0
MathSciNet review:
970702
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An n-cluster is a set of n lattice points in ${{\mathbf {R}}^2}$ with no 3 points collinear, no 4 points concyclic, and where all mutual distances are nonzero integers. The initial discoveries of n-clusters for $1 < n < 7$ are reported. A progress report on small 6-clusters and the search for a 7-cluster is described. A question on the impact of the lattice point restriction is raised, and the definition of n-cluster is generalized to ${{\mathbf {R}}^m}$.
- Norman H. Anning and Paul Erdös, Integral distances, Bull. Amer. Math. Soc. 51 (1945), 598–600. MR 13511, DOI https://doi.org/10.1090/S0002-9904-1945-08407-9
- A. S. Besicovitch, Rational polygons, Mathematika 6 (1959), 98. MR 110682, DOI https://doi.org/10.1112/S0025579300001984
- D. E. Daykin, Rational polygons, Mathematika 10 (1963), 125–131. MR 169820, DOI https://doi.org/10.1112/S0025579300004046
- Paul Erdös, Integral distances, Bull. Amer. Math. Soc. 51 (1945), 996. MR 13512, DOI https://doi.org/10.1090/S0002-9904-1945-08490-0
- Richard K. Guy, Unsolved problems in number theory, Unsolved Problems in Intuitive Mathematics, vol. 1, Springer-Verlag, New York-Berlin, 1981. Problem Books in Mathematics. MR 656313 William Kalsow, Private communication. Arnfried Kemnitz, Private communication. Kevin J. Romero, Private communication.
- T. K. Sheng, Rational polygons, J. Austral. Math. Soc. 6 (1966), 452–459. MR 0209235
- T. K. Sheng and D. E. Daykin, On approximating polygons by rational polygons, Math. Mag. 39 (1966), 299–300. MR 207648, DOI https://doi.org/10.2307/2689020
Retrieve articles in Mathematics of Computation with MSC: 52A37
Retrieve articles in all journals with MSC: 52A37
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society