Procedures for estimating the error in Padé approximation
HTML articles powered by AMS MathViewer
- by Claude Brezinski PDF
- Math. Comp. 53 (1989), 639-648 Request permission
Abstract:
Kronrod’s procedure is a method for estimating the error in Gaussian quadrature methods. Padé approximants are formal Gaussian quadrature formulas. In a previous paper, Kronrod’s method was used to obtain estimates of the error in Padé approximation. Using a new interpretation of this procedure and three different expressions of the error of Padé approximants, extensions of the method are obtained. They provide new error estimates for Padé approximants. These estimates are compared.References
-
R. Baillaud & H. Bourget (Eds.), Correspondance d’Hermite et de Stieltjes, Gauthier-Villars, Paris, 1905.
- Claude Brezinski, Padé-type approximation and general orthogonal polynomials, International Series of Numerical Mathematics, vol. 50, Birkhäuser Verlag, Basel-Boston, Mass., 1980. MR 561106, DOI 10.1007/978-3-0348-6558-6
- Claude Brezinski, Error estimate in Padé approximation, Orthogonal polynomials and their applications (Segovia, 1986) Lecture Notes in Math., vol. 1329, Springer, Berlin, 1988, pp. 1–19. MR 973418, DOI 10.1007/BFb0083350
- Claude Brezinski, A new approach to convergence acceleration methods, Nonlinear numerical methods and rational approximation (Wilrijk, 1987) Math. Appl., vol. 43, Reidel, Dordrecht, 1988, pp. 373–405. MR 1005369
- André Draux, Polynômes orthogonaux formels, Lecture Notes in Mathematics, vol. 974, Springer-Verlag, Berlin, 1983 (French). Applications. MR 690769, DOI 10.1007/BFb0066470
- Walter Gautschi, Gauss-Kronrod quadrature—a survey, Numerical methods and approximation theory, III (Niš, 1987) Univ. Niš, Niš, 1988, pp. 39–66. MR 960329
- Aleksandr Semenovich Kronrod, Nodes and weights of quadrature formulas. Sixteen-place tables, Consultants Bureau, New York, 1965. Authorized translation from the Russian. MR 0183116
- Marc Prévost, Stieltjes- and Geronimus-type polynomials, J. Comput. Appl. Math. 21 (1988), no. 2, 133–144. MR 944160, DOI 10.1016/0377-0427(88)90263-4
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 639-648
- MSC: Primary 65D32; Secondary 41A21, 65G05
- DOI: https://doi.org/10.1090/S0025-5718-1989-0979935-0
- MathSciNet review: 979935