Estimates of eigenvalues for iterative methods
HTML articles powered by AMS MathViewer
- by Gene H. Golub and Mark D. Kent PDF
- Math. Comp. 53 (1989), 619-626 Request permission
Abstract:
We describe a procedure for determining estimates of the eigenvalues of operators used in various iterative methods for the solution of linear systems of equations. We also show how to determine upper and lower bounds for the error in the approximate solution of linear equations, using essentially the same information as that needed for the eigenvalue calculations. The methods described depend strongly upon the theory of moments and Gauss quadrature.References
- Paul Concus, Gene H. Golub, and Dianne P. O’Leary, A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, Studies in numerical analysis, MAA Stud. Math., vol. 24, Math. Assoc. America, Washington, DC, 1984, pp. 178–198. MR 925214
- Germund Dahlquist, Stanley C. Eisenstat, and Gene H. Golub, Bounds for the error of linear systems of equations using the theory of moments, J. Math. Anal. Appl. 37 (1972), 151–166. MR 292281, DOI 10.1016/0022-247X(72)90264-8
- Germund Dahlquist, Gene H. Golub, and Stephen G. Nash, Bounds for the error in linear systems, Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978) Lecture Notes in Control and Information Sci., vol. 15, Springer, Berlin-New York, 1979, pp. 154–172. MR 554209
- Walter Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), no. 3, 289–317. MR 667829, DOI 10.1137/0903018
- Walter Gautschi, Questions of numerical condition related to polynomials, Studies in numerical analysis, MAA Stud. Math., vol. 24, Math. Assoc. America, Washington, DC, 1984, pp. 140–177. MR 925213
- Gene H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973), 318–334. MR 329227, DOI 10.1137/1015032 G. H. Golub, Error Bounds for Iterative Methods, NA-85-34, Dept. of Computer Science, Stanford University, 1985. G. H. Golub & M. D. Kent, Estimates of Eigenvalues for Iterative Methods, NA-87-02, Dept. of Computer Science, Stanford University, 1987.
- Gene H. Golub and Richard S. Varga, Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second order Richardson iterative methods. I, Numer. Math. 3 (1961), 147–156. MR 145678, DOI 10.1007/BF01386013
- Cornelius Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards 45 (1950), 255–282. MR 0042791
- R. A. Sack and A. F. Donovan, An algorithm for Gaussian quadrature given modified moments, Numer. Math. 18 (1971/72), 465–478. MR 303693, DOI 10.1007/BF01406683
- John C. Wheeler, Modified moments and Gaussian quadratures, Rocky Mountain J. Math. 4 (1974), 287–296. MR 334466, DOI 10.1216/RMJ-1974-4-2-287
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 619-626
- MSC: Primary 65F10; Secondary 65F15
- DOI: https://doi.org/10.1090/S0025-5718-1989-0979938-6
- MathSciNet review: 979938